Mentions légales du service
Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
triangles
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Container registry
Model registry
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
BERTOT Yves
triangles
Commits
eca60236
Commit
eca60236
authored
5 years ago
by
BERTOT Yves
Browse files
Options
Downloads
Patches
Plain Diff
A much simpler proof of Knuth's 4th axiom thanks to tail_coefD_gt0
parent
9486ee47
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
to_ccw_system.v
+18
-34
18 additions, 34 deletions
to_ccw_system.v
with
18 additions
and
34 deletions
to_ccw_system.v
+
18
−
34
View file @
eca60236
...
@@ -631,6 +631,24 @@ rewrite -lerNgt ler_eqVlt tail_coef_eq0 (negbTE ptbn0) /= tail_coefN oppr_gt0.
...
@@ -631,6 +631,24 @@ rewrite -lerNgt ler_eqVlt tail_coef_eq0 (negbTE ptbn0) /= tail_coefN oppr_gt0.
by
right
.
by
right
.
Qed
.
Qed
.
Lemma
Kn4
(
R
:
realDomainType
)
(
a
b
c
d
:
R
*
R
)
:
ccw
a
b
d
->
ccw
b
c
d
->
ccw
c
a
d
->
ccw
a
b
c
.
Proof
.
move
=>
abd
bcd
cad
.
set
uabd
:=
ccw_uniq
abd
.
set
ubcd
:=
ccw_uniq
bcd
.
set
ucad
:=
ccw_uniq
cad
.
have
uabc
:
uniq
[
::
a
;
b
;
c
].
move:
(
uabd
)
(
ubcd
)
(
ucad
);
rewrite
/=
!
(
inE
,
negb_or
)
-!
andbA
(
eq_sym
a
c
).
by
move
=>
/
andP
[]
->
_
/
andP
[]
->
_
/
andP
[]
->
_.
rewrite
ccw_tail_coef
//.
have
->
:
ptbs
a
b
c
=
ptbs
b
c
d
+
ptbs
c
a
d
+
ptbs
a
b
d
.
have
:=
Knuth_4_main
(
ptb
a
)
(
ptb
b
)
(
ptb
c
)
(
ptb
d
).
rewrite
-/
(
ptbs
a
b
c
)
-/
(
ptbs
a
b
d
)
-/
(
ptbs
b
c
d
)
swap_det_surface
.
by
rewrite
-/
(
ptbs
c
a
d
)
opprK
=>
/
eqP
;
rewrite
subr_eq0
eq_sym
=>
/
eqP
.
by
rewrite
!
tail_coefD_gt0
// -ccw_tail_coef.
Qed
.
Definition
bnd
(
R
:
realFieldType
)
(
a
b
c
:
R
*
R
)
(
h
:
uniq
[
::
a
;
b
;
c
])
:
R
:=
Definition
bnd
(
R
:
realFieldType
)
(
a
b
c
:
R
*
R
)
(
h
:
uniq
[
::
a
;
b
;
c
])
:
R
:=
proj1_sig
proj1_sig
(
non_zero_polynomial_sign
(
non_zero_polynomial
h
)).
(
non_zero_polynomial_sign
(
non_zero_polynomial
h
)).
...
@@ -660,40 +678,6 @@ case:ifP; case: ifP=> _ _ _ /eqP; rewrite ?(negbTE (oner_neq0 R)) ?znm1 //;
...
@@ -660,40 +678,6 @@ case:ifP; case: ifP=> _ _ _ /eqP; rewrite ?(negbTE (oner_neq0 R)) ?znm1 //;
by
case
:
ifP
=>
_
//; rewrite ?(eq_sym (1 : R)) (negbTE m1not1).
by
case
:
ifP
=>
_
//; rewrite ?(eq_sym (1 : R)) (negbTE m1not1).
Qed
.
Qed
.
Lemma
Kn4
(
R
:
realFieldType
)
(
a
b
c
d
:
R
*
R
)
:
ccw
a
b
d
->
ccw
b
c
d
->
ccw
c
a
d
->
ccw
a
b
c
.
Proof
.
move
=>
abd
bcd
cad
.
set
uabd
:=
ccw_uniq
abd
.
set
ubcd
:=
ccw_uniq
bcd
.
set
ucad
:=
ccw_uniq
cad
.
have
uabc
:
uniq
[
::
a
;
b
;
c
].
move:
(
uabd
)
(
ubcd
)
(
ucad
);
rewrite
/=
!
(
inE
,
negb_or
)
-!
andbA
(
eq_sym
a
c
).
by
move
=>
/
andP
[]
->
_
/
andP
[]
->
_
/
andP
[]
->
_.
set
epsilon
:=
Num
.
min
(
bnd
uabd
)
(
Num
.
min
(
bnd
ubcd
)
(
Num
.
min
(
bnd
ucad
)
(
Num
.
min
(
bnd
uabc
)
1
))).
have
egt0
:
0
<
epsilon
by
rewrite
!
ltr_minr
!
bnd0
ltr01
.
set
t
:=
epsilon
/
2
%:
R
;
have
/
andP
[
tgt0
tlte
]
:
0
<
t
<
epsilon
.
by
have
:=
midf_lt
egt0
;
rewrite
add0r
=>
[][
->
->
].
have
tabd
:
0
<
t
<
bnd
(
uabd
).
by
rewrite
tgt0
/=
(
ltr_le_trans
tlte
)
// !ler_minl lerr ?orbT.
have
tbcd
:
0
<
t
<
bnd
(
ubcd
).
by
rewrite
tgt0
/=
(
ltr_le_trans
tlte
)
// !ler_minl lerr ?orbT.
have
tcad
:
0
<
t
<
bnd
(
ucad
).
by
rewrite
tgt0
/=
(
ltr_le_trans
tlte
)
// !ler_minl lerr ?orbT.
have
tabc
:
0
<
t
<
bnd
(
uabc
).
by
rewrite
tgt0
/=
(
ltr_le_trans
tlte
)
// !ler_minl lerr ?orbT.
move:
(
abd
);
rewrite
(
ccw_to_ptb
tabd
).
move:
(
bcd
);
rewrite
(
ccw_to_ptb
tbcd
).
move:
(
cad
);
rewrite
(
ccw_to_ptb
tcad
)
=>
pcad
pbcd
pabd
.
rewrite
(
ccw_to_ptb
tabc
).
have
vabc
:
ptbs
a
b
c
=
ptbs
b
c
d
+
ptbs
c
a
d
+
ptbs
a
b
d
.
have
:=
Knuth_4_main
(
ptb
a
)
(
ptb
b
)
(
ptb
c
)
(
ptb
d
).
rewrite
-/
(
ptbs
a
b
c
)
-/
(
ptbs
a
b
d
)
-/
(
ptbs
b
c
d
)
swap_det_surface
.
by
rewrite
-/
(
ptbs
c
a
d
)
opprK
=>
/
eqP
;
rewrite
subr_eq0
eq_sym
=>
/
eqP
.
by
rewrite
vabc
-
horner_evalE
!
rmorphD
/=
!
horner_evalE
!
addr_gt0
.
Qed
.
Lemma
Kn5
(
R
:
realFieldType
)
(
a
b
c
d
e
:
R
*
R
)
:
Lemma
Kn5
(
R
:
realFieldType
)
(
a
b
c
d
e
:
R
*
R
)
:
ccw
a
b
c
->
ccw
a
b
d
->
ccw
a
b
e
->
ccw
a
b
c
->
ccw
a
b
d
->
ccw
a
b
e
->
ccw
a
c
d
->
ccw
a
d
e
->
ccw
a
c
e
.
ccw
a
c
d
->
ccw
a
d
e
->
ccw
a
c
e
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment