Commit 78d24b14 authored by MARCHE Claude's avatar MARCHE Claude

new tests from bugs reported in the BTS. Bug 16972 fixed

parent 2c38a456
......@@ -147,6 +147,24 @@ and no epsilon
chaque instance necessaires. plutot qu'un seul symbole _match
polymorphe.
==================== Roadmap for release 0.87 ========================
DATE : ?
Release Notes (details in file CHANGES):
== TODO ==
* Coq realization of bitvector theory
* make counter-examples feature more robust
* support for both isabelle 2014 and 2015
* review support for division operators by SMT provers
* take some time to fix some bugs of the BTS: 18029 at least
==================== Roadmap for release 0.86 ========================
DATE : fin avril / début mai
......
module M
use import HighOrd
type t = A | B
type s = { field1 : t -> t ; field2 : t -> t }
function const (x:'b) : 'a -> 'b = \y:'a.x
predicate p (u:s) (a b:t) = u.field1 = const a /\ u.field2 = const b
let fail (u:s) : unit
requires { p u A A }
ensures { u.field1 = u.field2 }
= ()
end
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE why3session PUBLIC "-//Why3//proof session v5//EN"
"http://why3.lri.fr/why3session.dtd">
<why3session shape_version="4">
<prover id="0" name="Alt-Ergo" version="0.99.1" timelimit="5" memlimit="1000"/>
<file name="../16972.mlw" expanded="true">
<theory name="M" sum="9422b749a767ddf788c2af5b11303c86" expanded="true">
<goal name="WP_parameter fail" expl="VC for fail" expanded="true">
<proof prover="0"><result status="valid" time="0.00" steps="2"/></proof>
</goal>
</theory>
</file>
</why3session>
(*
Error message: This expression has type t <> 'a 'b, but is expected to have type t 'a1 'a2
Clone substitute every occurence of the type by the logic version, while
we expect to use the program version in add.
*)
module A
type t
val add t : unit
end
module B
type t = { ghost a : unit }
clone A with type t = t
let sub (x:t) : unit = A.add x
end
......@@ -235,4 +235,13 @@ theory TestPVSRealAbs
lemma l: A.abs (-. 1.0) = 1.0
end
\ No newline at end of file
end
theory TestTransform
predicate a int
predicate b int
lemma L: a 1 /\ b 2
end
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment