Mentions légales du service

Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • mgenet/dolfin_warp
  • cpatte/dolfin_dic
  • falvarez/dolfin_dic
  • eberbero/dolfin_dic
4 results
Show changes
Showing
with 2249 additions and 0 deletions
# noise_level regul_level disp_err_avg disp_err_std
0.0 0.99 0.00028417829801934103 0.0
0.0 0.8 0.0003457815404307538 0.0
0.0 0.4 0.00048022273764362124 0.0
0.0 0.2 0.0005187809178222003 0.0
0.0 0.1 0.0005727119360465418 0.0
0.0 0.05 0.0006031837067736637 0.0
0.0 0.025 0.0006152841902575706 0.0
0.0 0.0125 0.0006327861685430558 0.0
0.0 0.001 0.00051934522280663 0.0
0.1 0.99 0.010808800056539232 0.0005362249539470191
0.1 0.8 0.010998468754528798 0.000513820171066674
0.1 0.4 0.011445329187696335 0.000499032559731241
0.1 0.2 0.012050804289884066 0.0004919115862185821
0.1 0.1 0.012848654311811569 0.0005231416696091857
0.1 0.05 0.013773600764662258 0.0005722444400992171
0.1 0.025 0.014795863755446309 0.0006029591540843283
0.1 0.0125 0.015961096090562656 0.0006104985419226959
0.1 0.001 0.045490139274622865 0.0012476881321506167
0.2 0.99 0.026694547123949218 0.0018301458601376595
0.2 0.8 0.027197602224481005 0.0017351067479708829
0.2 0.4 0.028112744459432126 0.0017628395543780606
0.2 0.2 0.029358346059759188 0.0017821687207432296
0.2 0.1 0.03101443574992488 0.0017770034262748675
0.2 0.05 0.03295340205044829 0.0016801447023513908
0.2 0.025 0.03511307172840204 0.0016211818594785413
0.2 0.0125 0.037663108582119 0.0015421612224518777
0.2 0.001 0.11150907609292038 0.012440521530165165
0.3 0.99 0.04448140844311659 0.0026469651118007234
0.3 0.8 0.04552478515713853 0.0023049185210227796
0.3 0.4 0.047631497199161266 0.0021862014198355084
0.3 0.2 0.04992015264542798 0.0022558429655571265
0.3 0.1 0.05279810070342519 0.0025947856850757787
0.3 0.05 0.05664129894279596 0.0032576144883590267
0.3 0.025 0.06170224878168764 0.00417203677801766
0.3 0.0125 0.06867557970895152 0.007062262540548239
0.3 0.001 0.3482779609304819 0.05642379778753999
# noise_level regul_level disp_err_avg disp_err_std
0.0 0.99 0.0004939777824945341 0.0
0.0 0.8 0.0004895933401073531 0.0
0.0 0.4 0.00047927496566707535 0.0
0.0 0.2 0.000492425073157513 0.0
0.0 0.1 0.0005249913432411667 0.0
0.0 0.05 0.0005676021212820686 0.0
0.0 0.025 0.0005827204691458032 0.0
0.0 0.0125 0.0006175980727173215 0.0
0.0 0.001 0.00051934522280663 0.0
0.1 0.99 0.010613237991169455 0.0008870640037359933
0.1 0.8 0.01061608591396033 0.0008887130148058874
0.1 0.4 0.010696601938418893 0.0008862295690914342
0.1 0.2 0.010881254201210493 0.0008775412294714439
0.1 0.1 0.011197697976652992 0.0008632619481391089
0.1 0.05 0.011690782342297847 0.0008274495349259126
0.1 0.025 0.012426661742411188 0.0007765157397798059
0.1 0.0125 0.013483391893395095 0.0007080595461771215
0.1 0.001 0.045490139274622865 0.0012476881321506167
0.2 0.99 0.02562151209051621 0.0018314105215969164
0.2 0.8 0.025632476314662776 0.0018154371667222003
0.2 0.4 0.02585983877259581 0.001789177307108364
0.2 0.2 0.026273179953875587 0.0016777537253578286
0.2 0.1 0.0269348453751898 0.0015919311249241867
0.2 0.05 0.027916182205298005 0.001522095104091548
0.2 0.025 0.029346206388701758 0.0015195867614792005
0.2 0.0125 0.031467330912025276 0.001414247394787981
0.2 0.001 0.11150907609292038 0.012440521530165165
0.3 0.99 0.04242314118063274 0.0023897216627500875
0.3 0.8 0.0424498220339548 0.002428189672830974
0.3 0.4 0.04274883364688399 0.002415496643651663
0.3 0.2 0.04353475413042809 0.0022954375211470114
0.3 0.1 0.04498996962241809 0.001978302238239705
0.3 0.05 0.04698834655954552 0.002057910139721028
0.3 0.025 0.049998910060690085 0.0022150083155624742
0.3 0.0125 0.05475595492218235 0.0028456279193838133
0.3 0.001 0.3482779609304819 0.05642379778753999
# noise_level regul_level disp_err_avg disp_err_std
0.0 0.99 0.000894913670686505 0.0
0.0 0.8 0.0008948327179141007 0.0
0.0 0.4 0.00089290201603703 0.0
0.0 0.2 0.0008862638827011979 0.0
0.0 0.1 0.0008769778732517048 0.0
0.0 0.05 0.0008720787937504464 0.0
0.0 0.025 0.0008721458661482371 0.0
0.0 0.0125 0.0008720579255821412 0.0
0.0 0.001 0.00051934522280663 0.0
0.1 0.99 0.016105411896270468 0.0007258011373982465
0.1 0.8 0.016109243064581977 0.0007311772104687502
0.1 0.4 0.01611884665680863 0.0007287207364561438
0.1 0.2 0.016153000991802082 0.0007210462526533489
0.1 0.1 0.016230004855970682 0.0007082043176172654
0.1 0.05 0.016368822091143095 0.0006847327203703247
0.1 0.025 0.016604795025722083 0.0006625048426703339
0.1 0.0125 0.0169986088823817 0.0006257721154723544
0.1 0.001 0.045490139274622865 0.0012476881321506167
0.2 0.99 0.03853231705879241 0.0023641006823163723
0.2 0.8 0.03854061551737574 0.002369832562862271
0.2 0.4 0.0384773210839831 0.0024015709300898133
0.2 0.2 0.03841481763141202 0.002393691493218177
0.2 0.1 0.03855678428371194 0.0024759738828724876
0.2 0.05 0.03891614350264622 0.002536896350436595
0.2 0.025 0.0393994408405145 0.0025418442830418557
0.2 0.0125 0.04041462131455802 0.0025202659781279895
0.2 0.001 0.11150907609292038 0.012440521530165165
0.3 0.99 0.09165374169581116 0.04289249439570307
0.3 0.8 0.0913182215815278 0.041783107099622595
0.3 0.4 0.09191025152684898 0.041253316677020445
0.3 0.2 0.09179321972673232 0.040810191824664915
0.3 0.1 0.09093594800390138 0.03989890323008269
0.3 0.05 0.09715721408187769 0.043353204628432396
0.3 0.025 0.09635428308632522 0.040053949614048
0.3 0.0125 0.0958144737147211 0.03686015146166034
0.3 0.001 0.3482779609304819 0.05642379778753999
# noise_level regul_level disp_err_avg disp_err_std
0.0 0.99 5.334322109343638e-05 0.0
0.0 0.8 5.0768752468158725e-05 0.0
0.0 0.4 0.00011648584764873425 0.0
0.0 0.2 0.00022072287190903758 0.0
0.0 0.1 0.00032829309066352265 0.0
0.0 0.05 0.00042525576218150983 0.0
0.0 0.025 0.0005455545875389306 0.0
0.0 0.0125 0.0006936116847384577 0.0
0.0 0.001 0.00051934522280663 0.0
0.1 0.99 0.0030587897095403953 0.0005450315912807827
0.1 0.8 0.003328476672127558 0.00047496561214216735
0.1 0.4 0.005063220055420892 0.00023749556277365404
0.1 0.2 0.007155359335828481 0.00016354311598568624
0.1 0.1 0.00978370935321516 0.0001399879454544922
0.1 0.05 0.013009855277245602 0.00015009732361750787
0.1 0.025 0.016783569142765627 0.00017171216567023282
0.1 0.0125 0.021152445392149406 0.00020809950386278266
0.1 0.001 0.045490139274622865 0.0012476881321506167
0.2 0.99 0.007836581635251808 0.0015530568647414628
0.2 0.8 0.008416287134760886 0.0014545723857287637
0.2 0.4 0.011948296730618318 0.0011416429677772362
0.2 0.2 0.01637155198318624 0.0011253263218829561
0.2 0.1 0.02190267357880416 0.0010209862479467395
0.2 0.05 0.02884985695202552 0.0008350126792848217
0.2 0.025 0.03738351904901983 0.0006720086143020984
0.2 0.0125 0.0477715160651345 0.0009338555773492819
0.2 0.001 0.11150907609292038 0.012440521530165165
0.3 0.99 0.02280264444506426 0.008968485548405113
0.3 0.8 0.021471246987665428 0.007264514399909607
0.3 0.4 0.0213046658320458 0.0032656852230482647
0.3 0.2 0.027035125405266248 0.002043189697793837
0.3 0.1 0.03606952480495309 0.0015824225277902297
0.3 0.05 0.047306980812514166 0.001434055870590802
0.3 0.025 0.06147573687252247 0.0016673492217698157
0.3 0.0125 0.07918268862780517 0.0019135388789697587
0.3 0.001 0.3482779609304819 0.05642379778753999
# noise_level regul_level disp_err_avg disp_err_std
0.0 0.99 0.00089491711664884 0.0
0.0 0.8 0.0008948587196891053 0.0
0.0 0.4 0.0008928375052203912 0.0
0.0 0.2 0.0008862684730681632 0.0
0.0 0.1 0.0008770314556670836 0.0
0.0 0.05 0.0008723137556135655 0.0
0.0 0.025 0.0008730238032763445 0.0
0.0 0.0125 0.000874111722227979 0.0
0.0 0.001 0.00051934522280663 0.0
0.1 0.99 0.01610541784764838 0.0007257892661009569
0.1 0.8 0.01610921916594025 0.0007311810092881902
0.1 0.4 0.01611869349482291 0.0007286521342049172
0.1 0.2 0.016152168918725954 0.0007209719760162287
0.1 0.1 0.01622811769811038 0.0007076543001709818
0.1 0.05 0.016363940350526775 0.0006840550036146843
0.1 0.025 0.016596657560431376 0.0006544480487288193
0.1 0.0125 0.01697780854883297 0.0006185083150726038
0.1 0.001 0.045490139274622865 0.0012476881321506167
0.2 0.99 0.038532292126443615 0.0023641083910049404
0.2 0.8 0.03854041890926114 0.0023697950224300175
0.2 0.4 0.03847642957292373 0.00240126034441312
0.2 0.2 0.038415936628001884 0.0023894135701014274
0.2 0.1 0.03855595137253273 0.002470497347057294
0.2 0.05 0.03889993708986826 0.0025353143563041462
0.2 0.025 0.03940092907329074 0.002554026860141877
0.2 0.0125 0.04034834821980717 0.0025189610859531787
0.2 0.001 0.11150907609292038 0.012440521530165165
0.3 0.99 0.09165362691387817 0.042892557902672185
0.3 0.8 0.0913282506964351 0.04177830572254213
0.3 0.4 0.09334974669555635 0.042465481858771734
0.3 0.2 0.09399334630214862 0.04317162624313504
0.3 0.1 0.09028586681441339 0.03865280729375347
0.3 0.05 0.09495793214763824 0.040516138519015164
0.3 0.025 0.09776432242913413 0.04397321836986062
0.3 0.0125 0.09449071066882184 0.03595686308479016
0.3 0.001 0.3482779609304819 0.05642379778753999
#coding=utf8
########################################################################
import numpy
import os
import myPythonLibrary as mypy
import dolfin_warp as dwarp
########################################################################
def plot_disp_error_vs_regul_strength(
images_folder : str ,
sol_folder : str ,
structure_type : str ,
deformation_type : str ,
texture_type : str ,
regul_type : str ,
noise_level_lst : list ,
n_runs_for_noisy_images : int ,
regul_level_lst : list ,
mesh_size : float = 0.1 ,
regul_level_for_zero : float = 1e-3 ,
generate_datafile : bool = True ,
generate_datafile_with_limited_precision : bool = False,
generate_plotfile : bool = True ,
generate_plot : bool = True ):
print ("images_folder:" , images_folder )
print ("sol_folder:" , sol_folder )
print ("structure_type:" , structure_type )
print ("deformation_type:", deformation_type)
print ("texture_type:" , texture_type )
print ("regul_type:" , regul_type )
script_basename = "plot_disp_error_vs_regul_strength"
if not os.path.exists(script_basename):
os.mkdir(script_basename)
datafile_basename = script_basename
datafile_basename += "/"+structure_type
datafile_basename += "-"+deformation_type
datafile_basename += "-"+texture_type
datafile_basename += "-"+regul_type
########################################################################
if (generate_datafile) or (generate_datafile_with_limited_precision):
if (generate_datafile): data_printer = mypy.DataPrinter(
names=["noise_level", "regul_level", "disp_err_avg", "disp_err_std"],
filename=datafile_basename+".dat",
limited_precision=False)
if (generate_datafile_with_limited_precision): data_printer2 = mypy.DataPrinter(
names=["noise_level", "regul_level", "disp_err_avg", "disp_err_std"],
filename=datafile_basename+"-limited_precision.dat",
limited_precision="True")
if (generate_datafile): data_printer3 = mypy.DataPrinter(
names=["noise_level", "regul_level", "disp_err"],
filename=datafile_basename+"-all_points.dat",
limited_precision=False)
if (structure_type in ("square", "disc", "ring")):
ref_disp_array_name = "displacement"
elif (structure_type in ("heart")):
ref_disp_array_name = "U"
else: assert (0)
for noise_level in noise_level_lst:
for regul_level in regul_level_lst:
print ("noise_level:", noise_level)
print ("regul_level:", regul_level)
if (regul_level == 0.0):
regul_level_for_write = regul_level_for_zero
else:
regul_level_for_write = regul_level
n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1
disp_err_lst = []
for k_run in range(1, n_runs+1):
print ("k_run:", k_run)
images_basename = structure_type
images_basename += "-"+deformation_type
images_basename += "-"+texture_type
images_basename += "-noise="+str(noise_level)
if (n_runs > 1):
images_basename += "-run="+str(k_run).zfill(2)
sol_basename = images_basename
sol_basename += "-h="+str(mesh_size)
sol_basename += "-"+regul_type
sol_basename += "-regul="+str(regul_level)
disp_err = dwarp.compute_displacement_error(
working_folder=sol_folder,
working_basename=sol_basename,
ref_folder=images_folder,
ref_basename=structure_type+"-"+deformation_type+"-h=0.1",
working_disp_array_name="displacement",
ref_disp_array_name=ref_disp_array_name,
verbose=0)
print ("disp_err:", disp_err)
if (generate_datafile): data_printer3.write_line([noise_level, regul_level_for_write, disp_err])
disp_err_lst.append(disp_err)
disp_err_avg = numpy.mean(disp_err_lst)
disp_err_std = numpy.std(disp_err_lst)
print ("disp_err_avg:", disp_err_avg)
print ("disp_err_std:", disp_err_std)
if (generate_datafile ): data_printer.write_line([noise_level, regul_level_for_write, disp_err_avg, disp_err_std])
if (generate_datafile_with_limited_precision): data_printer2.write_line([noise_level, regul_level_for_write, disp_err_avg, disp_err_std])
if (generate_datafile ): data_printer.write_line(); data_printer.write_line()
if (generate_datafile_with_limited_precision): data_printer2.write_line(); data_printer2.write_line()
if (generate_datafile ): data_printer3.write_line(); data_printer3.write_line()
if (generate_datafile ): data_printer.close()
if (generate_datafile_with_limited_precision): data_printer2.close()
if (generate_datafile ): data_printer3.close()
########################################################################
if (generate_plotfile):
plotfile = open(datafile_basename+".plt", "w")
plotfile.write('''\
set terminal pdf enhanced size 4,3; datafile_ext = "pdf"
load "Set1.plt"
set linestyle 1 pointtype 0
set linestyle 2 pointtype 0
set linestyle 3 pointtype 0
set linestyle 4 pointtype 0
set linestyle 5 pointtype 0
set linestyle 6 pointtype 0
set linestyle 7 pointtype 0
set linestyle 8 pointtype 0
set linestyle 9 pointtype 0
set style fill transparent solid 0.1 noborder
datafile_basename = "'''+datafile_basename+'''"
datafile_name = datafile_basename.".dat"
poinfile_name = datafile_basename."-all_points.dat"
set output datafile_basename.".".datafile_ext
set title "'''+regul_type+'''"
# set title "'''+structure_type+'''-'''+deformation_type+'''-'''+regul_type+'''"
set key right box opaque textcolor variable width -1
set grid
set xlabel "regularization strength"
set xrange ['''+str(regul_level_for_zero)+''':1]
set xtics add ("0" '''+str(regul_level_for_zero)+''')
set xtics add ("0.99" 1e0)
set format x "%g"
set logscale x
set ylabel "normalized displacement error (%)"
set yrange [1e-1:1e+2]
set logscale y
plot ''')
for k_noise_level,noise_level in enumerate(noise_level_lst):
plotfile.write(((''' ''')*(k_noise_level>0))+'''datafile_name index '''+str(k_noise_level)+''' using ($2):(100*$3) with lines linestyle '''+str(k_noise_level+1)+''' linewidth 3 title "noise = '''+str(noise_level)+'''"'''+''',\\\n''')
#plotfile.write( ''' ''' +'''datafile_name index '''+str(k_noise_level)+''' using ($2):(100*$3):(100*$4) with errorbars linestyle '''+str(k_noise_level+1)+''' notitle''' +''',\\\n''')
#plotfile.write( ''' ''' +'''datafile_name index '''+str(k_noise_level)+''' using ($2):(100*$3-100*$4):(100*$3+100*$4) with filledcurves linestyle '''+str(k_noise_level+1)+''' notitle''' +((''',\\
plotfile.write( ''' ''' +'''poinfile_name index '''+str(k_noise_level)+''' using ($2):(100*$3) with points linestyle '''+str(k_noise_level+1)+''' notitle''' +((''',\\
''')*(k_noise_level<len(noise_level_lst)-1)))
plotfile.close()
########################################################################
if (generate_plot):
os.system("gnuplot "+datafile_basename+".plt")
os.system("convert -density 300 "+datafile_basename+".pdf"+" "+datafile_basename+".png")
########################################################################
if (__name__ == "__main__"):
import fire
fire.Fire(plot_disp_error_vs_regul_strength)
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
#k_frame Err_avg Err_std Ecc_avg Ecc_std Ell_avg Ell_std Erc_avg Erc_std Erl_avg Erl_std Ecl_avg Ecl_std
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.004629702772945166 0.0 0.003407413139939308 0.0 0.0016850474057719111 0.0 -0.0012902331072837114 0.0 0.00011935704242205247 0.0 0.0001694990787655115 0.0
2 0.0024934762623161077 0.0 0.0027501643635332584 0.0 0.001840141718275845 0.0 -0.0012133653508499265 0.0 -0.0005730708944611251 0.0 -0.00043151932186447084 0.0
3 0.00337977334856987 0.0 0.0022687693126499653 0.0 0.0017218717839568853 0.0 -0.00039677266613580287 0.0 -0.0002957665710709989 0.0 -0.0010454701259732246 0.0
4 0.0035385838709771633 0.0 0.0028843453619629145 0.0 0.0017311685951426625 0.0 -0.0021433313377201557 0.0 -0.00029201165307313204 0.0 -0.00012462609447538853 0.0
5 0.0015430341009050608 0.0 0.0027987295761704445 0.0 0.0012578798923641443 0.0 -0.0004460901254788041 0.0 -0.00020644141477532685 0.0 -0.0004581794491969049 0.0
6 0.003166780574247241 0.0 0.002939527155831456 0.0 0.0016164116095751524 0.0 -0.0005895877256989479 0.0 3.6184726923238486e-05 0.0 -0.0005750684067606926 0.0
7 0.0026378529146313667 0.0 0.0018884214805439115 0.0 0.0018579739844426513 0.0 -0.0019291063072159886 0.0 -0.00031296093948185444 0.0 -0.0001308170467382297 0.0
8 0.002505834912881255 0.0 0.0020912201143801212 0.0 0.0016387715004384518 0.0 -0.0011261244071647525 0.0 -0.00020224634499754757 0.0 -0.0002808494318742305 0.0
9 0.0020054327324032784 0.0 0.0016470839036628604 0.0 0.0018844997975975275 0.0 -0.0010187539737671614 0.0 -0.00024658828624524176 0.0 -0.0004892792203463614 0.0
10 0.0003206762485206127 0.0 0.000568015209864825 0.0 0.000319346523610875 0.0 -0.0032576974481344223 0.0 -0.0017955085495486856 0.0 -0.0021377485245466232 0.0
#k_frame Err_avg Err_std Ecc_avg Ecc_std Ell_avg Ell_std Erc_avg Erc_std Erl_avg Erl_std Ecl_avg Ecl_std
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 -1.676215610757481e-08 0.0 8.810070006859405e-09 0.0 1.7777892935555428e-08 0.0 1.0039198361511126e-09 0.0 6.278449982133338e-13 0.0 -2.714760360955637e-10 0.0
2 -1.1134595467865438e-08 0.0 6.602142832434765e-09 0.0 -3.5246507934516558e-09 0.0 4.0946818158360543e-10 0.0 1.0910434777855471e-09 0.0 -1.6101424638037543e-09 0.0
3 -8.635846704407868e-09 0.0 1.790180803595831e-08 0.0 -1.5966572064485263e-08 0.0 1.88267290646138e-09 0.0 4.0906772413862313e-10 0.0 -1.407592264968116e-09 0.0
4 -1.361421753109937e-09 0.0 6.0532676648961115e-09 0.0 -2.563485956841305e-08 0.0 1.2802909843401267e-09 0.0 1.8615646801833918e-09 0.0 6.414080377936671e-10 0.0
5 1.003583971481703e-08 0.0 -2.9389196853912836e-08 0.0 -1.1582512726704408e-08 0.0 -1.4466401410118124e-09 0.0 4.042536583259704e-10 0.0 -3.2454566811779273e-10 0.0
6 -1.8583316219178414e-08 0.0 -1.7025714171836626e-08 0.0 2.6417806608947103e-08 0.0 1.0555503138220956e-09 0.0 -5.09403963455668e-10 0.0 5.013615078652833e-10 0.0
7 -1.2131830651185282e-08 0.0 8.284130714741877e-09 0.0 6.595098689388124e-09 0.0 2.1396515670346616e-09 0.0 -7.439872329317865e-11 0.0 -8.103669818515513e-11 0.0
8 2.2741312832863514e-08 0.0 -2.2131908750111506e-08 0.0 -2.3900601497928164e-09 0.0 1.1001345390226902e-09 0.0 7.472911872641319e-11 0.0 1.6393322810337452e-10 0.0
9 2.4566505274492556e-08 0.0 3.247324853461464e-09 0.0 -1.7395906937167638e-08 0.0 -2.0489480945240501e-10 0.0 -3.189172190221079e-11 0.0 -1.005237212914345e-11 0.0
10 -9.44877731612337e-10 0.0 2.4172916113229803e-08 0.0 2.4693775912965066e-08 0.0 2.4043136925833153e-10 0.0 -4.117866117536728e-11 0.0 1.7973265237225533e-11 0.0
#k_frame Err_avg Err_std Ecc_avg Ecc_std Ell_avg Ell_std Erc_avg Erc_std Erl_avg Erl_std Ecl_avg Ecl_std
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.024251069873571396 0.0 0.00018869031919166446 0.0 0.0001891673164209351 0.0 0.0003573070571292192 0.0 0.0003571710840333253 0.0 -0.00014842009113635868 0.0
2 0.04381919652223587 0.0 0.0005194715340621769 0.0 0.000520187197253108 0.0 0.00038145744474604726 0.0 0.00038120115641504526 0.0 -0.00012791478366125375 0.0
3 0.054514314979314804 0.0 0.0006071278476156294 0.0 0.0006070085801184177 0.0 0.0004917706246487796 0.0 0.0004917973419651389 0.0 -0.0001064796160790138 0.0
4 0.08838944882154465 0.0 0.0003158355539198965 0.0 0.00031678954837843776 0.0 0.000300459039863199 0.0 0.0003001783916261047 0.0 -2.7250584025750868e-05 0.0
5 0.10377706587314606 0.0 0.00015749224985484034 0.0 0.00015796917432453483 0.0 5.500734914676286e-05 0.0 5.487778253154829e-05 0.0 -2.1641300918417983e-05 0.0
6 0.1221187636256218 0.0 -0.00012282967509236187 0.0 -0.00012247210543137044 0.0 -0.0005718281026929617 0.0 -0.0005719048203900456 0.0 4.901972260995535e-06 0.0
7 0.14686228334903717 0.0 0.00033710733987390995 0.0 0.0003374650259502232 0.0 0.00030292762676253915 0.0 0.0003027931961696595 0.0 -0.00012013605009997264 0.0
8 0.1613456755876541 0.0 0.0005728825926780701 0.0 0.0005727633251808584 0.0 0.00048060022527351975 0.0 0.00048067214083857834 0.0 -0.00016298347327392548 0.0
9 0.1878327578306198 0.0 0.0004683669831138104 0.0 0.00046848627971485257 0.0 -7.232871666928986e-06 0.0 -7.30867805032176e-06 0.0 -5.731832789024338e-05 0.0
10 0.210282564163208 0.0 0.0002953586808871478 0.0 0.0002954779483843595 0.0 0.00016746979963500053 0.0 0.0001674335217103362 0.0 -5.108838377054781e-05 0.0
#k_frame Err_avg Err_std Ecc_avg Ecc_std Ell_avg Ell_std Erc_avg Erc_std Erl_avg Erl_std Ecl_avg Ecl_std
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0007633498171344399 0.0 8.821526535029989e-06 0.0 8.821526535029989e-06 0.0 -2.4930607585121195e-20 2.3900980262647657e-19 4.1766888830776847e-20 2.8087838493962063e-19 4.548061169980118e-21 7.54314945656091e-21
2 0.0012282513780519366 0.0 1.8835246009984985e-05 0.0 1.8835246009984985e-05 0.0 4.2863053864067426e-19 6.712947696596968e-19 2.7204889734488126e-19 7.381715176751782e-19 5.6717185624379045e-21 1.059095481115188e-20
3 0.0013420038158074021 0.0 2.098105505865533e-05 0.0 2.098105505865533e-05 0.0 1.5960047314896903e-19 5.546033955281438e-19 2.520709879024525e-19 5.315669826709992e-19 4.020475959029307e-21 8.872061809066259e-21
4 0.0013420038158074021 0.0 2.098105505865533e-05 0.0 2.098105505865533e-05 0.0 1.5960047314896903e-19 5.546033955281438e-19 2.520709879024525e-19 5.315669826709992e-19 4.020475959029307e-21 8.872061809066259e-21
5 0.0013322156155481935 0.0 3.707477662828751e-05 0.0 3.707477662828751e-05 0.0 3.5164430116606613e-19 5.770468865191415e-19 4.670181820764171e-19 5.502073870628987e-19 1.695623064704377e-20 1.6999634876379305e-20
6 0.0005363471573218703 0.0 2.217317342001479e-05 0.0 2.217317342001479e-05 0.0 2.16836114484421e-19 2.6046080872283215e-19 2.134289208540239e-19 2.471086960638387e-19 3.769280928940308e-21 1.1303444123342549e-20
7 0.00013471556303557009 0.0 4.482369695324451e-05 0.0 4.482369695324451e-05 0.0 -1.2572272355224675e-20 6.24861679598019e-20 1.5039333685402677e-21 7.025485669864979e-20 1.0666934784894322e-20 3.456392772109667e-20
8 -8.27874246169813e-05 0.0 5.209581649978645e-05 0.0 5.209581649978645e-05 0.0 -5.530862204725572e-20 6.262034037900384e-20 -2.1184225272982796e-20 7.09196751464924e-20 5.759037933653762e-21 1.767562988398584e-20
9 -0.00021646064124070108 0.0 5.281110861687921e-05 0.0 5.281110861687921e-05 0.0 -4.0463259051638594e-20 6.838315958763958e-20 -7.71011922799573e-20 4.655898357410454e-20 4.1802010887274105e-20 2.9316814944802825e-20
10 -0.00022116837499197572 0.0 4.386997898109257e-05 0.0 4.386997898109257e-05 0.0 -6.111967968201756e-20 9.650599757037411e-20 -4.4245010571447675e-20 8.571607835783233e-20 -1.1411705105541053e-20 1.9048673855468837e-20
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.