Reasoning about Reconfigurations of Distributed Systems

Emma Ahrens, Joost-Pieter Katoen (RWTH Aachen), Marius Bozga, Radu Iosif (VERIMAG Grenoble),
Why is reconfiguration needed?
Types of Dynamic Reconfiguration

- **Internal vs external** initiation of architectural changes
 - self-managing systems have internal initiation based on guards

- **Basic** (component/interaction addition/removal) and **composite** (sequencing, choice, iteration) operations

- **Centralized vs distributed** management
 - centralized (sequential) management is simpler to implement and supported by the majority of dynamic reconfiguration languages
 - distributed (parallel) management is more efficient and realistic but more challenging to model and reason about
Components and Interactions

- An architecture designates the set of components (network nodes) and interactions (connectors).

- A component encapsulates behavior (set of event traces) by means of a well-defined interface (= set of communication ports).

- We currently abstract behavior by finite-state machines.
Components and Interactions

- An interaction connects one or more components
 - interactions involving one component correspond to local actions
 - communication is considered lossless and instantaneous
Components and Interactions

- An interaction connects one or more components
 - interactions involving one component correspond to local actions
 - communication is considered lossless and instantaneous
Components and Interactions

- An interaction connects one or more components
 - interactions involving one component correspond to local actions
 - communication is considered lossless and instantaneous
Reconfiguration: what can possibly go wrong?
Reconfiguration: what can possibly go wrong?
Reconfiguration: what can possibly go wrong?

disconnect(T,y,z);
Reconfiguration: what can possibly go wrong?

disconnect(T,y,z);
disconnect(T,x,y);
Reconfiguration: what can possibly go wrong?

disconnect(T,y,z);
disconnect(T,x,y);
delete(S,y);
Reconfiguration: what can possibly go wrong?

disconnect(T,y,z);
disconnect(T,x,y);
delete(T,y);
connect(T,x,z);
Reconfiguration: what can possibly go wrong?

disconnect(T,y,z);
disconnect(T,x,y);
delete(T,y);
connect(T,x,z);
deadlock
Proving Correctness of a System after Reconfiguration

1. Resource logic-based assertion language for describing infinite sets of configurations
2. Hoare-style proof calculus for reasoning about reconfiguration programs
3. Sound push-button technique for proving safety of a set of configurations
What are the Configurations?

A configuration is an architecture with a snapshot of the states of each component.
Havoc vs Reconfiguration Actions

disconnect(T,x,y)
Havoc vs Reconfiguration Actions

disconnect(T,x,y)
Havoc vs Reconfiguration Actions

`disconnect(T,x,y)`
Havoc vs Reconfiguration Actions

disconnect(T,x,y)

disconnect(T,y,z)
Havoc vs Reconfiguration Actions

disconnect(T,x,y)

disconnect(T,y,z)
Havoc vs Reconfiguration Actions

disconnect(T,x,y)

disconnect(T,y,z)
Reconfiguration Programs are Infinite-state Systems

- Transition system with unbounded number of configurations:
 - new components can be added, yielding increasingly complex reachability graphs
Reconfiguration Programs are Infinite-state Systems

- Transition system with unbounded number of configurations:
 - new components can be added, yielding increasingly complex reachability graphs

- Two orthogonal types of actions that interleave:
 - **reconfiguration actions** change the architecture of a system
 - **havoc actions** are state changes caused by firing interactions
A Logic of Configurations (CL)

emp the empty architecture
C^q(x) a single component of type C in state q and no interactions
I(x_1, ..., x_n) a single interaction of type I (of arity n) and no components
ϕ_1 * ϕ_2 union of pointwise disjoint architectures
A Logic of Configurations (CL)

\[\text{emp} \]
the empty architecture

\[C^q(x) \]
a single component of type C in state q and no interactions

\[I(x_1, \ldots, x_n) \]
a single interaction of type I (of arity n) and no components

\[\phi_1 \ast \phi_2 \]
union of pointwise disjoint architectures

\[S^{\text{token}}(x) \ast T(x, y) \]
A Logic of Configurations (CL)

emp
C_q(x)
I(x_1,, x_n)
\(\phi_1 \ast \phi_2 \)

the empty architecture
a single component of type C in state q and no interactions
a single interaction of type I (of arity n) and no components
union of pointwise disjoint architectures

\[S^{\text{token}}(x) \ast T(x,y) \]
\[S^{\text{hole}}(y) \ast T(y,z) \]
A Logic of Configurations (CL)

\(\text{emp} \) the empty architecture

\(C^q(x) \) a single component of type \(C \) in state \(q \) and no interactions

\(I(x_1, \ldots, x_n) \) a single interaction of type \(I \) (of arity \(n \)) and no components

\(\Phi_1 \ast \Phi_2 \) union of pointwise disjoint architectures

\(S^{\text{token}}(x) \ast T(x, y) \)

\(S^{\text{hole}}(y) \ast T(y, z) \)

\(S^{\text{hole}}(z) \ast T(z, x) \)
A Logic of Configurations (CL)

emp
the empty architecture

$C^q(x)$
a single component of type C in state q and no interactions

$I(x_1, \ldots, x_n)$
a single interaction of type I (of arity n) and no components

$\phi_1 \ast \phi_2$
union of disjoint architectures

$S^\text{token}(x) \ast T(x,y) \ast S^\text{hole}(y) \ast T(y,z) \ast S^\text{hole}(z) \ast T(z,x)$
A Logic of Configurations (CL)

emp the empty architecture
C^q(x) a single component of type C in state q and no interactions
l(x_1, ..., x_n) a single interaction of type l (of arity n) and no components
ϕ_1 * ϕ_2 separating conjunction (union of disjoint architectures)
ϕ_1 ∧ ϕ_2 boolean conjunction
¬ϕ negation
∃x . ϕ existential quantification
CL is a Resource Logic

emp the empty architecture
C_q(x) a single component of type C in state q and no interactions
l(x_1, ..., x_n) a single interaction of type l (of arity n) and no components
\phi_1 \ast \phi_2 separating conjunction (union of disjoint architectures)
\phi_1 \land \phi_2 boolean conjunction

C_{q_1}(x) \ast C_{q_2}(y) implies x \neq y
C_{q_1}(x) \land C_{q_2}(y) implies x = y (also q_1 = q_2)
CL is a Resource Logic

- **emp**: the empty architecture
- **$C^q(x)$**: a single component of type C in state q and no interactions
- **$I(x_1, \ldots, x_n)$**: a single interaction of type I (of arity n) and no components
- **$\phi_1 \ast \phi_2$**: separating conjunction (union of disjoint architectures)
- **$\phi_1 \land \phi_2$**: boolean conjunction

Formulas

- $C^q_1(x) \ast C^q_2(y)$ implies $x \neq y$
- $C^q_1(x) \land C^q_2(y)$ implies $x = y$ (also $q_1 = q_2$)
- $I(x,y) \ast I(z,v)$ implies $x \neq z$ or $y \neq v$
- $I(x,y) \land I(z,v)$ implies $x = z$ and $y = v$
Adding Inductive Definitions

\[\text{Ring}_{h,t}() \]
Adding Inductive Definitions

Ring_{h,t}() \leftarrow \exists y_1 \exists y_2 . \text{Chain}_{h,t}(y_1, y_2) \ast T(y_2, y_1)
Adding Inductive Definitions

\[\text{Ring}_{h,t}() \leftarrow \exists y_1 \exists y_2 . \text{Chain}_{h,t}(y_1, y_2) * T(y_2, y_1) \]

\[\text{Chain}_{h,t}(x, y) \leftarrow \exists z . S^{\text{token}}(x) * T(x, z) * \text{Chain}_{h,t+1}(z, y) \]

\[\text{Chain}_{h,t}(x, y) \leftarrow \exists z . S^{\text{hole}}(x) * T(x, z) * \text{Chain}_{h-1,t+1}(z, y), \text{ where } n-1 \leq \max(0, n-1) \]
Adding Inductive Definitions

\[
\text{Ring}_{h,t}() \leftarrow \exists y_1 \exists y_2 . \text{Chain}_{h,t}(y_1, y_2) \cdot T(y_2, y_1)
\]

\[
\text{Chain}_{h,t}(x, y) \leftarrow \exists z . \text{S}_{\text{token}}(x) \cdot T(x, z) \cdot \text{Chain}_{h,t-1}(z, y)
\]

\[
\text{Chain}_{h,t}(x, y) \leftarrow \exists z . \text{S}_{\text{hole}}(x) \cdot T(x, z) \cdot \text{Chain}_{h-1,t}(z, y)
\]

\[
\text{Chain}_{0,1}(x, x) \leftarrow \text{S}_{\text{token}}(x)
\]

\[
\text{Chain}_{1,0}(x, x) \leftarrow \text{S}_{\text{hole}}(x)
\]

\[
\text{Chain}_{0,0}(x, x) \leftarrow \text{S}_{\text{token}}(x)
\]

\[
\text{Chain}_{0,0}(x, x) \leftarrow \text{S}_{\text{hole}}(x)
\]
Programmed Reconfigurability

- Sequential programming language based on:
 - primitives: `new(C,q,x)`, `delete(C,x)`, `connect(I,x₁, ..., xₙ)`, `disconnect(I,x₁, ..., xₙ)`
 - conditional: `with x₁, ..., xₙ : φ do ... od`, where φ is a CL formula with no predicates
 - sequential composition `(R₁; R₂)`, iteration `(R*)` and nondeterministic choice `(R₁ + R₂)`
An Example: Token Ring Node Removal
An Example: Token Ring Node Removal

with \(x, y, z : T(x, y) \cdot S_{\text{hole}}(y) \cdot T(y, z) \) do
\[\text{disconnect}(T, x, y); \]
An Example: Token Ring Node Removal

with \(x, y, z : T(x, y) \ast S^{\text{hole}}(y) \ast T(y, z) \) do

\[\text{disconnect}(T, x, y); \]
\[\text{disconnect}(T, y, z); \]
An Example: Token Ring Node Removal

with \(x, y, z : T(x, y) \ast S^\text{hole}(y) \ast T(y, z) \) do
 disconnect(T, x, y);
 disconnect(T, y, z);
 delete(S, y);
An Example: Token Ring Node Removal

with x,y,z : T(x,y) * S_{hole}(y) * T(y,z) do
 disconnect(T,x,y);
 disconnect(T,y,z);
 delete(S,y);
 connect(x,z);
od
An Example: Token Ring Node Removal

with x,y,z : T(x,y) * S_{hole}(y) * T(y,z) do
 disconnect(T,x,y);
 disconnect(T,y,z);
 delete(S,y);
 connect(x,z);
od
An Example: Token Ring Node Removal

\[
\{ \text{Ring}_{2,1}() \} \\
\text{with } x,y,z : T(x,y) * S^\text{hole}(y) * T(y,z) \text{ do} \\
\quad \text{disconnect}(T,x,y); \\
\quad \text{disconnect}(T,y,z); \\
\quad \text{delete}(S,y); \\
\quad \text{connect}(x,z); \\
\text{od} \\
\{ \text{Ring}_{1,1}() \}
\]

We want to prove that, after the reconfiguration, there is still a token left.
Local Reasoning

```plaintext
{emp} new(C,q,x) {C^q(x)}
{C(x)} delete(C,x) {emp}
{emp} connect(I,x_1, ..., x_n) {l(x_1, ...., x_n)}
{l(x_1, ...., x_n)} disconnect(I,x_1, ..., x_n) {emp}
```

A local specification only mentions those resources that are necessary to avoid faulting
Local Reasoning

\[
\{\text{emp}\} \text{ new}(C,q,x) \{C^q(x)\}
\]
\[
\{C(x)\} \text{ delete}(C,x) \{\text{emp}\}
\]
\[
\{\text{emp}\} \text{ connect}(I,x_1,\ldots,x_n) \{l(x_1,\ldots,x_n)\}
\]
\[
\{l(x_1,\ldots,x_n)\} \text{ disconnect}(I,x_1,\ldots,x_n) \{\text{emp}\}
\]

A **local specification** only mentions those resources that are necessary to avoid faulting

\[
\{\phi\} \ R \ \{\psi\}
\]
\[
\{\phi \ast F\} \ R \ \{\psi \ast F\}
\]

if \(R \) is a **local program** and

\[
\text{modifies}(R) \cap \text{fv}(F) = \emptyset
\]

The **frame rule** plugs a local specification into a global context
Which Reconfiguration Programs are Local?

Let Γ be the set of configurations

An action is a function $f : \Gamma \rightarrow \text{pow}(\Gamma)^T$, where $f(\gamma) = T \iff f$ faults in γ
Which Reconfiguration Programs are Local?

Let \(\Gamma \) be the set of configurations

An action is a function \(f : \Gamma \rightarrow \text{pow}(\Gamma)^T \), where \(f(\gamma) = T \Leftrightarrow f \) faults in \(\gamma \)

An action \(f \) is local \(\Leftrightarrow f(\gamma_1 \ast \gamma_2) \subseteq f(\gamma_1) \ast \{\gamma_2\} \), where \(S \subseteq T \), for each \(S \) in \(\text{pow}(\Gamma) \)

- new\((C,q,x)\), delete\((C,x)\), connect\((I,x_1, \ldots, x_n)\), disconnect\((I,x_1, \ldots, x_n)\)

- with \(x_1, \ldots, x_n : \phi \) do ... od, where \(\phi \) is a conjunction of equalities

- nondeterministic choices \(R_1 + R_2 \) between local programs
Which Reconfiguration Programs are Local?

Let Γ be the set of configurations

An action is a function $f : \Gamma \rightarrow \text{pow}(\Gamma)^T$, where $f(\gamma) = T \Leftrightarrow f$ faults in γ

An action f is local $\Leftrightarrow f(\gamma_1 * \gamma_2) \subseteq f(\gamma_1) * \{\gamma_2\}$, where $S \subseteq T$, for each S in $\text{pow}(\Gamma)$

- $\text{new}(C,q,x)$, $\text{delete}(C,x)$, $\text{connect}(I,x_1, ..., x_n)$, $\text{disconnect}(I,x_1, ..., x_n)$
- with $x_1, ..., x_n : \phi$ do ... od, where ϕ is a conjunction of equalities
- nondeterministic choices $R_1 + R_2$ between local programs

Non-local programs:

- sequential compositions $R_1; R_2$
- with $x_1, ..., x_n : \phi$ do ... od, where ϕ contains component/interaction atoms
Non-local Rules

\[
\{\phi \land (\theta \ast \text{true})\} \Rightarrow \{\Psi\} \\
\{\forall x . \neg(\theta \ast \text{true}) \lor \phi\} \text{ with } x:\theta \text{ do } R \text{ od } \{\exists x . \Psi\}
\]
Non-local Rules

\[
\begin{align*}
\{ \phi \land (\theta \ast \text{true}) \} & \quad R \quad \{ \psi \} \\
\{ \forall x . \neg(\theta \ast \text{true}) \lor \phi \} & \quad \text{with } x:\theta \text{ do } R \text{ od } \{ \exists x . \psi \}
\end{align*}
\]

fv(\phi) \cap x = \emptyset

\[
\begin{align*}
\{ \phi \} & \quad R_1 \quad \{ \theta \} \\
\{ \theta \} & \quad R_2 \quad \{ \psi \}
\end{align*}
\]

\{ \phi \} \quad R_1; \quad R_2 \quad \{ \psi \}

\theta \text{ is havoc invariant}
Non-local Rules

\[
\begin{align*}
\{\phi \land (\theta \ast \text{true})\} & \ R \ \{\psi\} \\
\{\forall x . \neg(\theta \ast \text{true}) \lor \phi\} & \text{with } x:\theta \text{ do } R \text{ od } \{\exists x . \psi\} \\
\{\phi\} \ R_1 \ \{\theta\} & \quad \{\theta\} \ R_2 \ \{\psi\} \\
\{\phi\} \ R_1; \ R_2 \ \{\psi\} & \quad \theta \text{ is havoc invariant} \\
\{\phi\} \ R_1 \ \{\psi\} & \quad \{\phi\} \ R_2 \ \{\psi\} \\
\{\phi\} \ R_1 + \ R_2 \ \{\psi\} & \\
fv(\phi) \cap x = \emptyset
\end{align*}
\]
Non-local Rules

\[
\{\phi \land (\theta \ast \text{true})\} \quad R \quad \{\psi\}
\]

\[
\{\forall x . \neg(\theta \ast \text{true}) \lor \phi\} \quad \text{with} \quad x:\theta \quad \text{do} \quad R \quad \text{od} \quad \{\exists x . \psi\}
\]

\[
\{\phi\} \quad R_1 \quad \{\theta\} \quad \quad \{\theta\} \quad R_2 \quad \{\psi\}
\]

\[
\{\phi\} \quad R_1 + R_2 \quad \{\psi\}
\]

\[
\{\phi\} \quad R \quad \{\phi\}
\]

\[
\{\phi\} \quad R^* \quad \{\phi\}
\]

fv(\phi) \cap x = \emptyset

\(\theta\) is havoc invariant

\(\phi\) is havoc invariant
Havoc Invariance

A formula ϕ is **havoc invariant** \iff for each model γ of ϕ and each state change $\gamma \rightarrow \gamma'$ corresponding to firing one or more interactions enabled in γ, we have that γ' is a model of ϕ.

Havoc invariance is related to **entailment** $\phi \models \psi \iff$ every model of ϕ is a model of ψ.
Structural Rules

\[
\begin{align*}
\{ \phi' \} & \mathcal{R} \{ \psi' \} & \text{if} & \quad \phi \vdash \phi' \\
\{ \phi \} & \mathcal{R} \{ \psi \} & & \\
\end{align*}
\]

\[
\begin{align*}
\{ \phi_i \} & \mathcal{R} \{ \psi_i \}, \quad i=1..k \\
\{ \bigvee_{i=1}^k \phi_i \} & \mathcal{R} \{ \bigvee_{i=1}^k \psi_i \} \\
\end{align*}
\]

\[
\begin{align*}
\{ \phi_i \} & \mathcal{R} \{ \psi_i \}, \quad i=1..k \\
\{ \bigwedge_{i=1}^k \phi_i \} & \mathcal{R} \{ \bigwedge_{i=1}^k \psi_i \} \\
\end{align*}
\]
Back to the Proof

\{\text{Ring}_{2,1}()\}

with \(x, y, z : T(x, y) \ast S_{\text{hole}}(y) \ast T(y, z)\) do

\hspace{1cm} \text{disconnect}(T, x, y);

\hspace{1cm} \text{disconnect}(T, y, z);

\hspace{1cm} \text{delete}(S, y);

\hspace{1cm} \text{connect}(x, z);

od

\{\text{Ring}_{1,1}()\}
Back to the Proof

{Ring$_{2,1}$()}
{∃a∃b . Chain$_{2,1}(a,b) * T(a,b)$}
{∀x∀y∀z . ¬[T(x,y) * S^{hole}(y) * T(y,z) * true] \lor ∃a∃b . Chain$_{2,1}(a,b) * T(a,b)$}
with x,y,z : T(x,y) * S^{hole}(y) * T(y,z) do

 disconnect(T,x,y);

 disconnect(T,y,z);

 delete(S,y);

 connect(x,z);

od

{∃a∃b . Chain$_{1,1}(a,b) * T(a,b)$}
{Ring$_{1,1}$()}

Back to the Proof

\{\text{Ring}_{2,1}()\}
\{\exists a \exists b . \text{Chain}_{2,1}(a,b) * T(a,b)\}
\{\forall x \forall y \forall z . \neg [T(x,y) * S^\text{hole}(y) * T(y,z) * \text{true}] \lor \exists a \exists b . \text{Chain}_{2,1}(a,b) * T(a,b)\}

with \(x, y, z : T(x,y) * S^\text{hole}(y) * T(y,z)\) do
\{\exists a \exists b . \text{Chain}_{2,1}(a,b) * T(a,b) \land [T(x,y) * S^\text{hole}(y) * T(y,z) * \text{true}]\}
\{T(x,y) * S^\text{hole}(y) * T(y,z) * \text{Chain}_{1,1}(z,x)\}

\text{disconnect}(T,x,y);
\text{disconnect}(T,y,z);
\text{delete}(S,y);
\text{connect}(x,z);
\{\text{Chain}_{1,1}(z,x) * T(x,z)\}
\text{od}
\{\exists a \exists b . \text{Chain}_{1,1}(a,b) * T(a,b)\}
\{\text{Ring}_{1,1}()\}
Back to the Proof

\{\text{Ring}_{2,1}()\}
\{\exists a\exists b . \text{Chain}_{2,1}(a,b) * T(a,b)\}
\{\forall x\forall y\forall z . \neg[T(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{true}] \lor \exists a\exists b . \text{Chain}_{2,1}(a,b) * T(a,b)\}

with \(x,y,z : T(x,y) * S_{\text{hole}}(y) * T(y,z)\) do
\{\exists a\exists b . \text{Chain}_{2,1}(a,b) * T(a,b) \land [T(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{true}]\}
\{T(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{Chain}_{1,1}(z,x)\}

\begin{align*}
\text{disconnect}(T,x,y); \\
\text{disconnect}(T,y,z); \\
\text{delete}(S,y); \\
\text{connect}(x,z);
\end{align*}
\{\text{Chain}_{1,1}(z,x) * T(x,z)\}
\text{od}
\{\exists a\exists b . \text{Chain}_{1,1}(a,b) * T(a,b)\}
\{\text{Ring}_{1,1}()\}
Back to the Proof

\{Ring_{2,1}()\}
\{\exists a \exists b . \text{Chain}_{2,1}(a,b) * T(a,b)\}
\{\forall x \forall y \forall z . \neg [T(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{true}] \lor \exists a \exists b . \text{Chain}_{2,1}(a,b) * T(a,b)\}

with \(x, y, z : T(x,y) * S_{\text{hole}}(y) * T(y,z) \) do
\{\exists a \exists b . \text{Chain}_{2,1}(a,b) * T(a,b) \land [T(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{true}]\}
\{T(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{Chain}_{1,1}(z,x)\}
 \text{ disconnect}(T,x,y);
\{S_{\text{hole}}(y) * T(y,z) * \text{Chain}_{1,1}(z,x)\}
 \text{ disconnect}(T,y,z);

\text{ delete}(S,y);
\text{ connect}(x,z);
\{\text{Chain}_{1,1}(z,x) * T(x,z)\}
\text{ od}\n\{\exists a \exists b . \text{Chain}_{1,1}(a,b) * T(a,b)\}
\{Ring_{1,1}()\}
{Ring\(_2,1()\)}
{\exists a \exists b \cdot \text{Chain}\(_2,1(a,b) \land T(a,b)\)}
{\forall x \forall y \forall z \cdot \neg[T(x,y) \land S^\text{hole}(y) \land T(y,z) \land \text{true}] \lor \exists a \exists b \cdot \text{Chain}\(_2,1(a,b) \land T(a,b)\)}

with \(x, y, z : T(x,y) \land S^\text{hole}(y) \land T(y,z)\) do
{\exists a \exists b \cdot \text{Chain}\(_2,1(a,b) \land T(a,b) \land [T(x,y) \land S^\text{hole}(y) \land T(y,z) \land \text{true}]]\}
{T(x,y) \land S^\text{hole}(y) \land T(y,z) \land \text{Chain}\(_1,1(z,x)\)}

\begin{align*}
\text{disconnect}(T,x,y); \\
S^\text{hole}(y) \land T(y,z) \land \text{Chain}\(_1,1(z,x)\) \\
\text{disconnect}(T,y,z);
\end{align*}

\begin{align*}
\text{delete}(S,y); \\
\text{connect}(x,z); \\
\text{Chain}\(_1,1(z,x) \land T(x,z)\)
\end{align*}

\text{od}
{\exists a \exists b \cdot \text{Chain}\(_1,1(a,b) \land T(a,b)\)}
{\text{Ring}\(_1,1()\)}
Back to the Proof

{\textbf{Ring}_{2,1}()}
{\exists a \exists b \ . \ \textbf{Chain}_{2,1}(a,b) \land T(a,b)}
{\forall x \forall y \forall z \ . \ \neg \left[T(x,y) \land S^{\text{hole}}(y) \land T(y,z) \land \text{true} \right] \lor \exists a \exists b \ . \ \textbf{Chain}_{2,1}(a,b) \land T(a,b)}

with \(x, y, z : T(x,y) \land S^{\text{hole}}(y) \land T(y,z) \) do

{\exists a \exists b \ . \ \textbf{Chain}_{2,1}(a,b) \land T(a,b) \land \left[T(x,y) \land S^{\text{hole}}(y) \land T(y,z) \land \text{true} \right]}

{\left[T(x,y) \land S^{\text{hole}}(y) \land T(y,z) \land \text{Chain}_{1,1}(z,x) \right]}

\text{disconnect}(T,x,y);

{\left[S^{\text{hole}}(y) \land T(y,z) \land \text{Chain}_{1,1}(z,x) \right]}

\text{disconnect}(T,y,z);

{\left[S^{\text{hole}}(y) \land \text{Chain}_{1,1}(z,x) \right]}

\text{delete}(S,y);

\text{connect}(x,z);

{\left[\text{Chain}_{1,1}(z,x) \land T(x,z) \right]}

od

{\exists a \exists b \ . \ \textbf{Chain}_{1,1}(a,b) \land T(a,b)}

{\textbf{Ring}_{1,1}()}
Back to the Proof

{Ring\(_2,1()\)}
{\exists a \exists b . \text{Chain}_2,1(a,b) * T(a,b)}
{\forall x \forall y \forall z . \neg [T(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{true}] \lor \exists a \exists b . \text{Chain}_2,1(a,b) * T(a,b)}

with \(x,y,z: T(x,y) * S_{\text{hole}}(y) * T(y,z)\) do

{\exists a \exists b . \text{Chain}_2,1(a,b) * T(a,b) \land [T(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{true}]}\)

{T(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{Chain}_1,1(z,x)}
 disconnect(T,x,y);

{S_{\text{hole}}(y) * T(y,z) * \text{Chain}_1,1(z,x)}
 disconnect(T,y,z);

{S_{\text{hole}}(y) * \fbox{\text{Chain}_1,1(z,x)}}
 delete(S,y);

 connect(x,z);

{\text{Chain}_1,1(z,x) * T(x,z)}
od

{\exists a \exists b . \text{Chain}_1,1(a,b) * T(a,b)}
{\text{Ring}_1,1()}
Back to the Proof

{\text{Ring}_2,1()}
{\exists a \exists b . \text{Chain}_2,1(a,b) * T(a,b)}
{\forall x \forall y \forall z . \neg [T(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{true}] \lor \exists a \exists b . \text{Chain}_2,1(a,b) * T(a,b)}

with x,y,z : T(x,y) * S_{\text{hole}}(y) * T(y,z) do
{\exists a \exists b . \text{Chain}_2,1(a,b) * T(a,b) \land [T(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{true}]}
{\text{T}(x,y) * S_{\text{hole}}(y) * T(y,z) * \text{Chain}_{1,1}(z,x)}
 \text{disconnect}(T,x,y);
{S_{\text{hole}}(y) * T(y,z) * \text{Chain}_{1,1}(z,x)}
 \text{disconnect}(T,y,z);
{S_{\text{hole}}(y) * \text{Chain}_{1,1}(z,x)}
 \text{delete}(S,y);
{\text{Chain}_{1,1}(z,x)}
 \text{connect}(x,z);
{\text{Chain}_{1,1}(z,x) * T(x,z)}
\text{od}
{\exists a \exists b . \text{Chain}_{1,1}(a,b) * T(a,b)}
{\text{Ring}_1,1()}
Back to the Proof

{\text{Ring}_{2,1}()} \\
\{\exists a \exists b . \text{Chain}_{2,1}(a,b) \land T(a,b)\} \\
\{\forall x \forall y \forall z . \neg[T(x,y) \land S_{\text{hole}}(y) \land T(y,z) \land \text{true}] \lor \exists a \exists b . \text{Chain}_{2,1}(a,b) \land T(a,b)\} \\
\text{with } x,y,z : T(x,y) \land S_{\text{hole}}(y) \land T(y,z) \text{ do} \\
\{\exists a \exists b . \text{Chain}_{2,1}(a,b) \land T(a,b) \land [T(x,y) \land S_{\text{hole}}(y) \land T(y,z) \land \text{true}]\} \\
\{T(x,y) \land S_{\text{hole}}(y) \land T(y,z) \land \text{Chain}_{1,1}(z,x)\} \\
\text{disconnect}(T,x,y); \\
\{S_{\text{hole}}(y) \land T(y,z) \land \text{Chain}_{1,1}(z,x)\} \\
\text{disconnect}(T,y,z); \\
\{S_{\text{hole}}(y) \land \text{Chain}_{1,1}(z,x)\} \\
\text{delete}(S,y); \\
\{\text{Chain}_{1,1}(z,x)\} \\
\text{connect}(x,z); \\
\{\text{Chain}_{1,1}(z,x) \land T(x,z)\} \\
\text{od} \\
\{\exists a \exists b . \text{Chain}_{1,1}(a,b) \land T(a,b)\} \\
\{\text{Ring}_{1,1}()\}
Back to the Proof

\[
\{\text{Ring}_{2,1}()\} \\
\{\exists a \exists b . \text{Chain}_{2,1}(a,b) \land T(a,b)\} \\
\{\forall x \forall y \forall z . \neg [T(x,y) \land S^\text{hole}(y) \land T(y,z) \land \text{true}] \lor \exists a \exists b . \text{Chain}_{2,1}(a,b) \land T(a,b)\} \\
\text{with } x, y, z : T(x,y) \land S^\text{hole}(y) \land T(y,z) \text{ do} \\
\{\exists a \exists b . \text{Chain}_{2,1}(a,b) \land T(a,b) \land [T(x,y) \land S^\text{hole}(y) \land T(y,z) \land \text{true}]\} \\
\{T(x,y) \land S^\text{hole}(y) \land T(y,z) \land \text{Chain}_{1,1}(z,x)\} \\
\quad \text{disconnect}(T, x, y); \\
\{S^\text{hole}(y) \land T(y,z) \land \text{Chain}_{1,1}(z,x)\} \\
\quad \text{disconnect}(T, y, z); \\
\{S^\text{hole}(y) \land \text{Chain}_{1,1}(z,x)\} \\
\quad \text{delete}(S, y); \\
\{\text{Chain}_{1,1}(z,x)\} \\
\quad \text{connect}(x, z); \\
\{\text{Chain}_{1,1}(z,x) \land T(x, z)\} \\
\od \\
\{\exists a \exists b . \text{Chain}_{1,1}(a,b) \land T(a,b)\} \\
\{\text{Ring}_{1,1}()\}
\]
Proving Havoc Invariance

Axioms and inference rules for havoc triples of the form:

$$\eta \triangleright \{\phi\} \ L \ \{\Psi\}$$

where ϕ and Ψ are CL formulae and L is an extended regular expression:

- ϵ is the empty language
- $\Sigma[\alpha]$ is an alphabet symbol, α is an interaction or a predicate atom, and η is a set of such symbols
- $L_1 \cdot L_2$ is the concatenation of L_1 and L_2
- $L_1 \cup L_2$ is the union of L_1 and L_2
- L^* is the iteration of L
- $L_1 \bowtie_{\eta_1, \eta_2} L_2$ is the interleaving (zip) product of L_1 and L_2 w.r.t. the alphabets η_1 and η_2
Havoc Triples

\[\models \eta \triangleright \{\{\phi\}\} \land \{\{\psi\}\} \]

for each each sequence \(\omega\) of interactions in the language of \(L\):

\(\gamma\) is a model of \(\phi\) and \(\gamma \xrightarrow{\omega} \gamma' \Rightarrow \gamma'\) is a model of \(\psi\)

NB: an interaction is executed in this context even with dangling ports

Proposition. \(\models \eta \triangleright \{\{\phi\}\} \Sigma[\phi]^* \{\{\psi\}\} \Rightarrow \phi\) is havoc invariant, where

\[\Sigma[\phi] \triangleq \bigcup\{\Sigma[\alpha] \mid \alpha\) is an interaction or a predicate atom of \(\phi\}\]
Regular Expression Rules

\[
\begin{align*}
\eta \triangleright \{\{\phi\}\} L_1 \{\{\theta\}\} & \quad \eta \triangleright \{\{\theta\}\} L_2 \{\{\psi\}\} \\
\eta \triangleright \{\{\phi\}\} L_1 \cdot L_2 \{\{\theta\}\} & \quad \eta \triangleright \{\{\phi\}\} L \{\{\phi\}\} \\
\eta \triangleright \{\{\phi\}\} L^* \{\{\phi\}\} & \quad \eta \triangleright \{\{\phi\}\} L_1 \{\{\psi\}\} \quad \quad \eta \triangleright \{\{\phi\}\} L_2 \{\{\psi\}\} \\
\eta \triangleright \{\{\phi\}\} L_1 \cup L_2 \{\{\psi\}\} & \quad \eta \triangleright \{\{\phi\}\} L_1 U L_2 \{\{\psi\}\} \\
\eta \triangleright \{\{\phi\}\} L_1 U L_2 \{\{\psi\}\} & \quad \eta \triangleright \{\{\phi\}\} L_1 \{\{\psi\}\}
\end{align*}
\]

\(\phi\) and \(\theta\) differ only by a renaming of states in the component atoms \(C^q(x)\).
The Composition Rule

\[\eta_i \triangleright \{\phi_i \ast F(\phi_i, \phi_3^i)\} \text{ L}_i \{\psi_i \ast F(\phi_i, \phi_3^i)\}, \quad i = 1, 2 \]

\[\eta_1 \cup \eta_2 \triangleright \{\phi_1 \ast \phi_2\} \text{ L}_1 \bowtie \eta_1, \eta_2 \text{ L}_2 \{\psi_1 \ast \psi_2\} \]

\[\eta_i = \Sigma[\phi_i \ast F(\phi_i, \phi_3^i)] \]
The Composition Rule

\[\eta_i \triangleright \{\phi_i \ast F(\phi_i, \phi_{3-i})\} \text{ L } \{\psi_i \ast F(\phi_i, \phi_{3-i})\}, \text{ i = 1,2} \]

\[\eta_1 \cup \eta_2 \triangleright \{\phi_1 \ast \phi_2\} \text{ L } \eta_1 \bowtie \eta_1, \eta_2 \text{ L } \{\psi_1 \ast \psi_2\} \]

\[\eta_i = \Sigma[\phi_i \ast F(\phi_i, \phi_{3-i})] \]
The Composition Rule

\[\eta_i \triangleright \{\phi_i \ast F(\phi_i, \phi_{3-i})\} \quad L_i \{\psi_i \ast F(\phi_i, \phi_{3-i})\}, \quad i = 1, 2 \]

\[\eta_1 \cup \eta_2 \triangleright \{\phi_1 \ast \phi_2\} \quad L_1 \bowtie \eta_1, \eta_2 \quad L_2 \{\psi_1 \ast \psi_2\} \]

\[\eta_i = \Sigma[\phi_i \ast F(\phi_i, \phi_{3-i})] \]
The Composition Rule

\[\eta_i \triangleright \{\phi_i \ast F(\phi_i, \phi_{3-i})\} L_i \{\psi_i \ast F(\phi_i, \phi_{3-i})\}, \ i = 1, 2 \]

\[\eta_1 \cup \eta_2 \triangleright \{\phi_1 \ast \phi_2\} L_1 \bowtie_{\eta_1, \eta_2} L_2 \{\psi_1 \ast \psi_2\} \]

\[\eta_i = \Sigma[\phi_i \ast F(\phi_i, \phi_{3-i})] \]
The Composition Rule

\[\eta_i \triangleright \{\{\phi_i \ast F(\phi_i, \phi_{3-i})\}\} L_i \{\{\psi_i \ast F(\phi_i, \phi_{3-i})\}\}, \ i = 1, 2 \]

\[\frac{\eta_1 \cup \eta_2 \triangleright \{\{\phi_1 \ast \phi_2\}\} \land_{\eta_1, \eta_2} L_1 \{\{\psi_1 \ast \psi_2\}\}}{\eta_i = \Sigma[\phi_i \ast F(\phi_i, \phi_{3-i})]} \]
The Composition Rule

\[\eta_i \triangleright \{\phi_i \ast F(\phi_i, \phi_{3-i})\} \ L_i \{\psi_i \ast F(\phi_i, \phi_{3-i})\}, \ i = 1, 2 \]

\[\eta_1 \cup \eta_2 \triangleright \{\phi_1 \ast \phi_2\} \ L_1 \bowtie_{\eta_1, \eta_2} L_2 \{\psi_1 \ast \psi_2\} \]

\[\eta_i = \Sigma[\phi_i \ast F(\phi_i, \phi_{3-i})] \]
The Unfolding Rule

\[(\eta \setminus \Sigma[A(y_1, \ldots, y_n)]) \cup \Sigma[\rho'] \triangleright \{\phi^* \rho'\} \quad L[\Sigma[A(y_1, \ldots, y_n)] / \Sigma[\rho']] \quad \{\psi\}\]

\[\eta \triangleright \{\phi^* A(y_1, \ldots, y_n)\} \quad L \quad \{\psi\}\]

\[A(x_1, \ldots, x_n) \leftarrow \rho \text{ is a rule defining } A\]

\[\rho' = \rho[x_1/y_1, \ldots, x_n/y_n]\]
The Unfolding Rule

\[(\eta \setminus \Sigma[A(y_1, \ldots, y_n)]) \cup \Sigma[\rho'] \triangleright \{(\phi^* \rho')\} \ \text{L}[\Sigma[A(y_1, \ldots, y_n)] / \Sigma[\rho']] \ {\{\psi\}\}}\]

\[\eta \triangleright \{(\phi^* A(y_1, \ldots, y_n))\} \ \text{L} \ {\{\psi\}\} \]

\[A(x_1, \ldots, x_n) \leftarrow \rho \text{ is a rule defining } A\]
\[\rho' = \rho[x_1/y_1, \ldots, x_n/y_n] \]

- each model of \(A(y_1, \ldots, y_n)\) is obtained from a finite number of unfoldings, called a \textit{stage number}\n
- the stage number multiset of the submodels of \(\phi^* A(y_1, \ldots, y_n)\) corresponding to predicate atoms strictly decreases in the \textit{multiset order} [Dershowitz & Manna 1979]
Cyclic Proofs

There is no right triangle whose sides are integers whose area is equal to the square of an integer. If there is a triangle ... there is a second triangle, smaller than the first, which has the same property. And if there is a second, smaller than the first ... then there is, by like reasoning, a third smaller than the second and so on ad infinitum. But there is not an infinite number of [positive] integers less than a given integer. [Fermat, 1659]
There is no right triangle whose sides are integers whose area is equal to the square of an integer. If there is a triangle there is a second triangle, smaller than the first, which has the same property. And if there is a second, smaller than the first then there is, by like reasoning, a third smaller than the second ... and so on ad infinitum. But there is not an infinite number of [positive] integers less than a given integer. [Fermat, 1659]
There is no right triangle whose sides are integers whose area is equal to the square of an integer. If there is a triangle ... there is a second triangle, smaller than the first, which has the same property. And if there is a second, smaller than the first ... then there is, by like reasoning, a third smaller than the second and so on ad infinitum. But there is not an infinite number of [positive] integers less than a given integer. [Fermat, 1659]
There is no right triangle whose sides are integers whose area is equal to the square of an integer. If there is a triangle ... there is a second triangle, smaller than the first, which has the same property. And if there is a second, smaller than the first ... then there is, by like reasoning, a third smaller than the second and so on ad infinitum. But there is not an infinite number of [positive] integers less than a given integer. [Fermat, 1659]
Cyclic Proofs

There is no right triangle whose sides are integers whose area is equal to the square of an integer. If there is a triangle ... there is a second triangle, smaller than the first, which has the same property. And if there is a second, smaller than the first ... then there is, by like reasoning, a third smaller than the second and so on ad infinitum. But there is not an infinite number of [positive] integers less than a given integer. [Fermat, 1659]
Cyclic Proofs

There is no right triangle whose sides are integers whose area is equal to the square of an integer. If there is a triangle ... there is a second triangle, smaller than the first, which has the same property. And if there is a second, smaller than the first ... then there is, by like reasoning, a third smaller than the second and so on ad infinitum. But there is not an infinite number of [positive] integers less than a given integer. [Fermat, 1659]
A Recap

- A simplified model of dynamic reconfigurable systems
 - components with finite-state behavior and interactions of finite arity
 - a sequential programming language for describing reconfiguration
- A resource logic for describing possibly infinite sets of configurations
 - inductively defined predicate symbols
- A proof system for reconfiguration programs
 - uses local reasoning to a maximum extent
 - generates external proof obligations (entailments and havoc invariants)
- A cyclic proof system for establishing havoc invariants
Future Work: Proof Automation

- Checking entailments automatically
 - undecidable problem
 - decidability requires several syntactic and a semantic restriction(s)
 - the restricted fragment was found to be 2EXPTIME-complete
 - semantic restriction of bounded degree excludes star architectures

- Checking havoc invariance automatically (work in progress)
 - undecidable problem
 - decidable for classes with decidable entailment

- Checking safety of a set of configurations described by a CL formula
 - undecidable problem
 - sound but incomplete method based on structural invariant synthesis