Commit df2a638a authored by Francois Bobot's avatar Francois Bobot

transformation à la nouvelle syntax de why de test-bobot.why

parent 3b7eda36
......@@ -94,7 +94,7 @@
:group 'why :type 'string)
(defun why-command-line (file)
(concat why-prog-name " -" why-prover " " why-options " " file))
(concat why-prog-name " -P " why-prover " " why-options " " file))
(defun why-find-alternate-file ()
"switch to the proof obligations buffer"
......
......@@ -4,8 +4,8 @@
theory Test_inline_trivial
type t
logic c : t
logic eq(x:'a, y:'a) = x=y
goal G : eq(c,c)
logic eq (x y :'a) = x=y
goal G : eq c c
end
theory Test_ind
......@@ -31,8 +31,8 @@ end
theory Test_simplify_array
use import array.Array
goal G : forall x,y:int. forall m: (int,int) t.
select(store(m,y,x),y) = x
goal G : forall x y:int. forall m: t int int.
select (store m y x) y = x
end
theory Test_conjunction
......@@ -49,7 +49,7 @@ theory Split_conj
(*goal G : forall x,y,z:int. ((p(x) -> p(y)) and ((not p(x)) -> p(z))) -> ((p(x) and p(y)) or ((not p(x)) and p(z)))*)
(*goal G : forall x,y,z:int. (if p(x) then p(y) else p(z)) <-> ((p(x) and p(y)) or ((not p(x)) and p(z)))*)
(*goal G : forall x,y,z:int. (if p(x) then p(y) else p(z)) -> (if p(x) then p(y) else p(z))*)
goal G : forall x,y,z:int. (p(x) <-> p(z)) -> (p(x) <-> p(z))
goal G : forall x y z:int. (p(x) <-> p(z)) -> (p(x) <-> p(z))
(*goal G : forall x,y,z:int. (p(z) <-> p(x)) -> (((not p(z)) and (not p(x)) or ((p(z)) and (p(x))))) *)
(*goal G : forall x,y,z:int. (p(x) or p(y)) -> p(z)*)
end
......@@ -59,20 +59,20 @@ end
theory TestEnco
use import int.Int
type 'a mytype
type mytype 'a
logic id(x: int) : int = x
logic id2(x: int) : int = id(x)
logic succ(x:int) : int = id(x+1)
goal G : (forall x:int. x=x) or
(forall x:int. x=x+1)
logic p('a ) : 'a mytype
logic p2('a mytype) : 'a
logic p('a ) : mytype 'a
logic p2(mytype 'a) : 'a
type toto
logic f (toto) : toto mytype
logic g (int mytype) : toto
logic h (int) : toto mytype
axiom A1 : forall x : 'a mytype. p(p2(x)) = x
logic f (toto) : mytype toto
logic g (mytype int) : toto
logic h (int) : mytype toto
axiom A1 : forall x : mytype 'a. p(p2(x)) = x
goal G2 : forall x:int. f(g(p(x))) = h(x)
end
......@@ -94,7 +94,7 @@ end
theory TestBuiltin_bool
use import bool.Bool
goal G : xorb(True,False) = True
goal G : xorb True False = True
end
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment