Commit 668b6595 by Jean-Christophe Filliâtre

library: fixed typos in bag

parent dbe85a01
 ... ... @@ -39,11 +39,12 @@ theory Bag axiom occ_singleton: forall x y: 'a. (x = y /\ (nb_occ y (singleton x)) = 1) \/ (x <> y /\ (nb_occ y (singleton x)) = 0) (* FIXME? nb_occ y (singleton x) = if x = y then 1 else 0 *) lemma occ_singleton_eq: forall x y: 'a. x = y -> (nb_occ y (singleton x)) = 1 forall x y: 'a. x = y -> nb_occ y (singleton x) = 1 lemma occ_singleton_neq: forall x y: 'a. x <> y -> (nb_occ y (singleton x)) = 0 forall x y: 'a. x <> y -> nb_occ y (singleton x) = 0 function union (bag 'a) (bag 'a) : bag 'a ... ... @@ -60,7 +61,7 @@ theory Bag lemma Union_assoc: forall a b c: bag 'a. union a (union b c) = union (union a b) c lemma bag_simpl: lemma bag_simpl_right: forall a b c: bag 'a. union a b = union c b -> a = c lemma bag_simpl_left: ... ... @@ -72,7 +73,7 @@ theory Bag lemma occ_add_eq: forall b: bag 'a, x y: 'a. x = y -> nb_occ x (add x b) = nb_occ x b + 1 x = y -> nb_occ y (add x b) = nb_occ y b + 1 lemma occ_add_neq: forall b: bag 'a, x y: 'a. x <> y -> nb_occ y (add x b) = nb_occ y b ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!