Commit 15756625 by MARCHE Claude

### update wp4 Coq proofs

parent 054b6909
This diff is collapsed.
 ... ... @@ -65,12 +65,12 @@ Axiom Select_neq : forall (a:Type) (b:Type), forall (m:(map a b)), forall (a1:a) (a2:a), forall (b1:b), (~ (a1 = a2)) -> ((get (set m a1 b1) a2) = (get m a2)). Parameter const: forall (b:Type) (a:Type), b -> (map a b). Parameter const: forall (a:Type) (b:Type), b -> (map a b). Set Contextual Implicit. Implicit Arguments const. Unset Contextual Implicit. Axiom Const : forall (b:Type) (a:Type), forall (b1:b) (a1:a), Axiom Const : forall (a:Type) (b:Type), forall (b1:b) (a1:a), ((get (const b1:(map a b)) a1) = b1). (* Why3 assumption *) ... ... @@ -221,7 +221,8 @@ Theorem eval_swap : forall (f:fmla) (sigma:(map Z value)) (pi:(list (Z* value)%type)) (id1:Z) (id2:Z) (v1:value) (v2:value), (~ (id1 = id2)) -> ((eval_fmla sigma (Cons (id1, v1) (Cons (id2, v2) pi)) f) <-> (eval_fmla sigma (Cons (id2, v2) (Cons (id1, v1) pi)) f)). induction f; try ae; intros sigma pi id1 id2 v1 v2. induction f. intros sigma pi id1 id2 v1 v2. Qed. ... ...
 ... ... @@ -522,6 +522,7 @@ theory GenFloatSpecFull lemma lt_le_trans: forall x y z:t. lt x y /\ le y z -> lt x z (* lemma le_ge_asym: forall x y:t. le x y /\ ge x y -> eq x y ... ... @@ -530,6 +531,7 @@ theory GenFloatSpecFull lemma not_gt_le: forall x y:t. not (gt x y) /\ is_not_NaN x /\ is_not_NaN y -> le x y *) end ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!