parser.mly 21.2 KB
Newer Older
1 2
/**************************************************************************/
/*                                                                        */
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
3 4 5 6 7
/*  Copyright (C) 2010-                                                   */
/*    Francois Bobot                                                      */
/*    Jean-Christophe Filliatre                                           */
/*    Johannes Kanig                                                      */
/*    Andrei Paskevich                                                    */
8 9 10 11 12 13 14 15 16 17 18
/*                                                                        */
/*  This software is free software; you can redistribute it and/or        */
/*  modify it under the terms of the GNU Library General Public           */
/*  License version 2.1, with the special exception on linking            */
/*  described in file LICENSE.                                            */
/*                                                                        */
/*  This software is distributed in the hope that it will be useful,      */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of        */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  */
/*                                                                        */
/**************************************************************************/
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
19 20 21 22 23 24 25 26 27 28 29 30 31 32

%{

  open Ptree
  open Parsing

  let loc () = (symbol_start_pos (), symbol_end_pos ())
  let loc_i i = (rhs_start_pos i, rhs_end_pos i)
  let loc_ij i j = (rhs_start_pos i, rhs_end_pos j)

  let mk_ppl loc d = { pp_loc = loc; pp_desc = d }
  let mk_pp d = mk_ppl (loc ()) d
  let mk_pp_i i d = mk_ppl (loc_i i) d
		    
Andrei Paskevich's avatar
Andrei Paskevich committed
33 34
  let mk_pat p = { pat_loc = loc (); pat_desc = p }

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
35 36 37 38 39 40
  let infix_ppl loc a i b = mk_ppl loc (PPinfix (a, i, b))
  let infix_pp a i b = infix_ppl (loc ()) a i b

  let prefix_ppl loc p a = mk_ppl loc (PPprefix (p, a))
  let prefix_pp p a = prefix_ppl (loc ()) p a

41 42 43 44
  let infix s = "infix " ^ s
  let prefix s = "prefix " ^ s
  let postfix s = "postfix " ^ s

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
(***
  let with_loc loc d = { pdesc = d; ploc = loc }
  let locate d = with_loc (loc ()) d
  let locate_i i d = with_loc (loc_i i) d

  let rec_name = function Srec (x,_,_,_,_,_) -> x | _ -> assert false

  let join (b,_) (_,e) = (b,e)

  let rec app f = function
    | [] -> 
	assert false
    | [a] -> 
	Sapp (f, a)
    | a :: l -> 
	let loc = join f.ploc a.ploc in 
	app (with_loc loc (Sapp (f, a))) l

  let bin_op (loc_op,op) e1 e2 =
    let f = with_loc loc_op (Svar op) in
    let f_e1 = with_loc (join e1.ploc loc_op) (Sapp (f, e1)) in
    locate (Sapp (f_e1, e2))
      
  let un_op (loc_op,op) e =
    locate (app (with_loc loc_op (Svar op)) [e])

  let ptype_c_of_v v =
    { pc_result_name = Ident.result;
      pc_result_type = v;
      pc_effect = { pe_reads = []; pe_writes = []; pe_raises = [] };
      pc_pre = []; 
      pc_post = None }

  let list_of_some = function None -> [] | Some x -> [x]

  (*s ensures a postcondition for a function body *)

  let force_function_post ?(warn=false) e = match e.pdesc with
    | Spost _ -> 
	e
    | _ -> 
       if warn then 
	 Format.eprintf 
	   "%ano postcondition for this function; true inserted@\n"
	   Loc.report_position e.ploc; 
       let q = 
	 { pa_name = Anonymous; pa_value = mk_pp PPtrue; pa_loc = loc () }
       in
       { e with pdesc = Spost (e, (q, []), Transparent) }
***)
%}

/* Tokens */ 

99
%token <string> LIDENT UIDENT
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
100
%token <string> INTEGER
101
%token <string> OP0 OP1 OP2 OP3
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
102 103 104 105
%token <Ptree.real_constant> FLOAT
%token <string> STRING
%token ABSURD AMPAMP AND ARRAY ARROW AS ASSERT AT AXIOM 
%token BANG BAR BARBAR BEGIN 
106
%token BIGARROW CHECK CLONE COLON COLONEQUAL COMMA DO 
107 108
%token DONE DOT ELSE END EOF EQUAL
%token EXCEPTION EXISTS EXPORT EXTERNAL FALSE FOR FORALL FPI 
109
%token FUN GOAL
110
%token IF IMPORT IN INCLUDE INDUCTIVE INVARIANT
111
%token LEFTB LEFTBLEFTB LEFTPAR LEFTSQ LEMMA 
112
%token LET LOGIC LRARROW MATCH 
113
%token NAMESPACE NOT OF OR PARAMETER PROP 
114
%token QUOTE RAISE RAISES READS REC REF RETURNS RIGHTB RIGHTBRIGHTB
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
115
%token RIGHTPAR RIGHTSQ 
116 117
%token SEMICOLON 
%token THEN THEORY TRUE TRY TYPE UNDERSCORE
118
%token UNIT USE VARIANT VOID WHILE WITH WRITES
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

/* Precedences */

%nonassoc prec_recfun
%nonassoc prec_fun
%left LEFTB LEFTBLEFTB
%left prec_simple

%left COLON 

%left prec_letrec
%left IN

%right SEMICOLON

%left prec_no_else
%left ELSE

%right prec_named
%left COLONEQUAL
139
%right prec_quant
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
140 141 142 143 144
%right ARROW LRARROW
%right OR BARBAR
%right AND AMPAMP
%right NOT
%right prec_if
145 146 147 148 149
%left EQUAL OP0
%left OP1
%left OP2
%left OP3
%right unary_op
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
150 151 152 153
%left prec_app
%left prec_ident
%left LEFTSQ

154 155 156
%nonassoc prec_logics prec_types
%nonassoc LOGIC TYPE

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
157 158 159 160 161 162 163 164 165
/* Entry points */

%type <Ptree.lexpr> lexpr
%start lexpr
%type <Ptree.logic_file> logic_file
%start logic_file
%%

logic_file:
166 167
| list1_theory EOF
   { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
168 169 170 171 172 173 174 175 176 177 178
| EOF 
   { [] }
;

list1_decl:
| decl 
   { [$1] }
| decl list1_decl 
   { $1 :: $2 }
;

179 180 181 182 183 184 185
list0_decl:
| /* epsilon */
   { [] }
| list1_decl 
   { $1 }
;

186
ident:
187 188
| lident_string { { id = $1; id_loc = loc () } }
| UIDENT        { { id = $1; id_loc = loc () } }
189 190
;

191
lident:
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
| lident_string
    { { id = $1; id_loc = loc () } }
;

lident_string:
| LIDENT                        
    { $1 }
| LEFTPAR UNDERSCORE lident_op UNDERSCORE RIGHTPAR 
    { infix $3 }
| LEFTPAR lident_op UNDERSCORE RIGHTPAR 
    { prefix $2 }
/*
| LEFTPAR UNDERSCORE lident_op RIGHTPAR 
    { postfix $3 }
*/
207 208
;

209 210 211 212 213 214
lident_op:
| OP0   { $1 }
| OP2   { $1 }
| OP3   { $1 }
| EQUAL { "=" }
;
215

216 217 218 219 220
any_op:
| OP0   { $1 }
| OP2   { $1 }
| OP3   { $1 }
;
221

222 223 224 225 226 227 228 229 230 231 232 233
uident:
| UIDENT { { id = $1; id_loc = loc () } }
;

lqualid:
| lident             { Qident $1 }
| uqualid DOT lident { Qdot ($1, $3) }
;

uqualid:
| uident             { Qident $1 }
| uqualid DOT uident { Qdot ($1, $3) }
234 235
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
236 237 238
any_qualid:
| ident                { Qident $1 }
| any_qualid DOT ident { Qdot ($1, $3) }
239 240
;

241
qualid:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
242 243
| ident             { Qident $1 }
| uqualid DOT ident { Qdot ($1, $3) }
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
params:
| /* epsilon */                          { [] }
| LEFTPAR list1_param_sep_comma RIGHTPAR { $2 }
;

param:
| primitive_type              { None, $1 }
| lident COLON primitive_type { Some $1, $3 }
;

list1_param_sep_comma:
| param                             { [$1] }
| param COMMA list1_param_sep_comma { $1 :: $3 }
;

260 261 262 263
primitive_types:
| /* epsilon */                                   { [] }
| LEFTPAR list1_primitive_type_sep_comma RIGHTPAR { $2 }

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
logic_type_option:
| /* epsilon */        { None }
| COLON primitive_type { Some $2 }
;

logic_def_option:
| /* epsilon */ { None }
| EQUAL lexpr   { Some $2 }
;

logic_decl:
| LOGIC lident params logic_type_option logic_def_option
    { { ld_loc = loc ();
	ld_ident = $2; ld_params = $3; ld_type = $4; ld_def = $5; } }
;

list1_logic_decl:
| logic_decl                  %prec prec_logics { [$1] }
| logic_decl list1_logic_decl                   { $1 :: $2 }
;

type_decl:
| TYPE typedecl typedefn
  { let _, pl, id = $2 in
    { td_loc = loc (); td_ident = id; td_params = pl; td_def = $3 } }
;

list1_type_decl:
| type_decl                  %prec prec_types { [$1] }
| type_decl list1_type_decl                   { $1 :: $2 }
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
296
decl:
297 298 299 300
| list1_type_decl
   { TypeDecl (loc (), $1) }
| list1_logic_decl
   { Logic (loc (), $1) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
301
| AXIOM uident COLON lexpr
302 303 304 305 306
   { Prop (loc (), Kaxiom, $2, $4) }
| GOAL uident COLON lexpr
   { Prop (loc (), Kgoal, $2, $4) }
| LEMMA uident COLON lexpr
   { Prop (loc (), Klemma, $2, $4) }
307 308
| INDUCTIVE lident primitive_types inddefn
   { Inductive_def (loc (), $2, $3, $4) }
309 310
| CLONE use clone_subst
   { UseClone (loc (), $2, Some $3) }
311
| USE use
312
   { UseClone (loc (), $2, None) }
313 314
| NAMESPACE uident list0_decl END
   { Namespace (loc (), $2, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
315 316
;

317 318 319 320 321 322 323 324
list1_theory:
| theory 
   { [$1] }
| theory list1_theory 
   { $1 :: $2 }
;

theory:
325
| THEORY uident list0_decl END 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
326
   { { pt_loc = loc (); pt_name = $2; pt_decl = $3 } }
327 328
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
329
typedecl:
330
| lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
331
    { (loc_i 1, [], $1) }
332
| type_var lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
333
    { (loc_i 2, [$1], $2) }
334
| LEFTPAR type_var COMMA list1_type_var_sep_comma RIGHTPAR lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
335 336 337 338 339
    { (loc_i 6, $2 :: $4, $6) }
;

typedefn:
| /* epsilon */
340 341 342
    { TDabstract }
| EQUAL primitive_type
    { TDalias $2 }
343 344 345
| EQUAL typecases
    { TDalgebraic $2 }
| EQUAL BAR typecases
346
    { TDalgebraic $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
347 348 349 350 351 352 353 354
;

typecases:
| typecase                { [$1] }
| typecase BAR typecases  { $1::$3 }
;

typecase:
355
| uident params { (loc_i 1,$1,$2) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
356 357 358 359 360 361 362 363 364 365 366 367 368
;

inddefn:
| /* epsilon */       { [] }
| EQUAL bar_ indcases { $3 }
;

indcases:
| indcase               { [$1] }
| indcase BAR indcases  { $1::$3 }
;

indcase:
369
| uident COLON lexpr { ($1,$3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
370 371 372 373
;

primitive_type:
| type_var 
374
   { PPTtyvar $1 }
375
| lqualid
376
   { PPTtyapp ([], $1) }
377
| primitive_type lqualid
378
   { PPTtyapp ([$1], $2) }
379
| LEFTPAR primitive_type COMMA list1_primitive_type_sep_comma RIGHTPAR lqualid
380
   { PPTtyapp ($2 :: $4, $6) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
;

list1_primitive_type_sep_comma:
| primitive_type                                      { [$1] }
| primitive_type COMMA list1_primitive_type_sep_comma { $1 :: $3 }
;

lexpr:
| lexpr ARROW lexpr 
   { infix_pp $1 PPimplies $3 }
| lexpr LRARROW lexpr 
   { infix_pp $1 PPiff $3 }
| lexpr OR lexpr 
   { infix_pp $1 PPor $3 }
| lexpr AND lexpr 
   { infix_pp $1 PPand $3 }
| NOT lexpr 
   { prefix_pp PPnot $2 }
399
| lexpr EQUAL lexpr 
400
   { let id = { id = infix "="; id_loc = loc_i 2 } in
401
     mk_pp (PPapp (Qident id, [$1; $3])) }
402 403
| lexpr OP0 lexpr 
   { let id = { id = infix $2; id_loc = loc_i 2 } in
404
     mk_pp (PPapp (Qident id, [$1; $3])) }
405 406
| lexpr OP1 lexpr 
   { let id = { id = infix $2; id_loc = loc_i 2 } in
407
     mk_pp (PPapp (Qident id, [$1; $3])) }
408 409
| lexpr OP2 lexpr 
   { let id = { id = infix $2; id_loc = loc_i 2 } in
410
     mk_pp (PPapp (Qident id, [$1; $3])) }
411 412
| lexpr OP3 lexpr 
   { let id = { id = infix $2; id_loc = loc_i 2 } in
413
     mk_pp (PPapp (Qident id, [$1; $3])) }
414 415 416 417 418 419 420 421
| any_op lexpr %prec unary_op
   { let id = { id = prefix $1; id_loc = loc_i 2 } in
     mk_pp (PPapp (Qident id, [$2])) }
/*
| lexpr any_op %prec unary_op
   { let id = { id = postfix $2; id_loc = loc_i 2 } in
     mk_pp (PPapp (Qident id, [$1])) }
*/
422
| qualid
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
423
   { mk_pp (PPvar $1) }
424
| qualid LEFTPAR list1_lexpr_sep_comma RIGHTPAR
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
425 426 427
   { mk_pp (PPapp ($1, $3)) }
| IF lexpr THEN lexpr ELSE lexpr %prec prec_if 
   { mk_pp (PPif ($2, $4, $6)) }
428 429 430 431
| FORALL list1_uquant_sep_comma triggers DOT lexpr %prec prec_quant
   { mk_pp (PPquant (PPforall, $2, $3, $5)) }
| EXISTS list1_uquant_sep_comma triggers DOT lexpr %prec prec_quant
   { mk_pp (PPquant (PPexists, $2, $3, $5)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
432
| INTEGER
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
433
   { mk_pp (PPconst (Term.ConstInt $1)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
434
| FLOAT
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
435
   { mk_pp (PPconst (Term.ConstReal $1)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
436 437 438 439 440 441
| TRUE
   { mk_pp PPtrue }
| FALSE
   { mk_pp PPfalse }    
| LEFTPAR lexpr RIGHTPAR
   { $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
442 443
| STRING lexpr %prec prec_named
   { mk_pp (PPnamed ($1, $2)) }
444
| LET lident EQUAL lexpr IN lexpr 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
445 446 447
   { mk_pp (PPlet ($2, $4, $6)) }
| MATCH lexpr WITH bar_ match_cases END
   { mk_pp (PPmatch ($2, $5)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
448 449
| lexpr COLON primitive_type
   { mk_pp (PPcast ($1, $3)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
450 451
;

452 453 454 455 456 457 458
list1_uquant_sep_comma:
| uquant                              { [$1] }
| uquant COMMA list1_uquant_sep_comma { $1::$3 }

uquant:
| list1_lident_sep_comma COLON primitive_type { $1,$3 }

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
459 460 461 462 463 464 465 466 467
match_cases:
| match_case                  { [$1] }
| match_case BAR match_cases  { $1::$3 }
;

match_case:
| pattern ARROW lexpr { ($1,$3) }
;

Andrei Paskevich's avatar
Andrei Paskevich committed
468 469 470 471
list1_pat_sep_comma:
| pattern                           { [$1] }
| pattern COMMA list1_pat_sep_comma { $1::$3 }

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
472
pattern:
Andrei Paskevich's avatar
Andrei Paskevich committed
473 474 475 476 477
| UNDERSCORE                                    { mk_pat (PPpwild) }
| lident                                        { mk_pat (PPpvar $1) }
| uqualid                                       { mk_pat (PPpapp ($1, [])) }
| uqualid LEFTPAR list1_pat_sep_comma RIGHTPAR  { mk_pat (PPpapp ($1, $3)) }
| pattern AS lident                             { mk_pat (PPpas ($1,$3)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
;

triggers:
| /* epsilon */                         { [] }
| LEFTSQ list1_trigger_sep_bar RIGHTSQ  { $2 }
;

list1_trigger_sep_bar:
| trigger                           { [$1] }
| trigger BAR list1_trigger_sep_bar { $1 :: $3 }
;

trigger:
  list1_lexpr_sep_comma { $1 }
;

list1_lexpr_sep_comma:
| lexpr                             { [$1] }
| lexpr COMMA list1_lexpr_sep_comma { $1 :: $3 }
;

type_var:
| QUOTE ident { $2 }
;

list1_type_var_sep_comma:
| type_var                                { [$1] }
| type_var COMMA list1_type_var_sep_comma { $1 :: $3 }
;

bar_:
| /* epsilon */ { () }
| BAR           { () }
;

513 514 515 516 517
list1_lident_sep_comma:
| lident                              { [$1] }
| lident COMMA list1_lident_sep_comma { $1 :: $3 }
;

518
use:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
519
| imp_exp any_qualid              
520
    { { use_theory = $2; use_as = None; use_imp_exp = $1 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
521 522
| imp_exp any_qualid AS uident
    { { use_theory = $2; use_as = Some $4; use_imp_exp = $1 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
523 524
;

525 526 527 528
imp_exp:
| IMPORT        { Import }
| EXPORT        { Export }
| /* epsilon */ { Nothing }
529 530
;

531
clone_subst:
532 533
| /* epsilon */          { [] } 
| WITH list1_comma_subst { $2 }
534 535 536
;

list1_comma_subst:
537 538
| subst                         { [$1] }
| subst COMMA list1_comma_subst { $1 :: $3 } 
539 540 541
;

subst:
542 543 544 545
| TYPE  qualid EQUAL qualid { CStsym ($2, $4) }
| LOGIC qualid EQUAL qualid { CSlsym ($2, $4) }
| LEMMA qualid              { CSlemma $2 }
| GOAL  qualid              { CSgoal  $2 }
546 547
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
548 549
/******* programs **************************************************

550 551 552 553 554 555
qualid_ident:
| IDENT          { $1, None }
| IDENT AT       { $1, Some "" }
| IDENT AT IDENT { $1, Some $3 }
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
list0_ident_sep_comma:
| /* epsilon * /         { [] }
| list1_ident_sep_comma { $1 }
;

decl:
| INCLUDE STRING
   { Include (loc_i 2,$2) }
| LET ident EQUAL expr
   { Program (loc_i 2,$2, $4) }
| LET ident binders EQUAL list0_bracket_assertion expr
   { Program (loc_i 2,$2, locate (Slam ($3, $5, force_function_post $6))) }
| LET REC recfun
   { let (loc,p) = $3 in Program (loc,rec_name p, locate p) }
| EXCEPTION ident
   { Exception (loc (), $2, None) }
| EXCEPTION ident OF primitive_type
   { Exception (loc (), $2, Some $4) }
| external_ PARAMETER list1_ident_sep_comma COLON type_v
   { Parameter (loc_i 3, $1, $3, $5) }

type_v:
| simple_type_v ARROW type_c
   { PVarrow ([Ident.anonymous, $1], $3) }
| ident COLON simple_type_v ARROW type_c
   { PVarrow ([($1, $3)], $5) }
| simple_type_v
   { $1 }
;

simple_type_v:
| primitive_type ARRAY    { PVref (PPTexternal ([$1], Ident.farray, loc_i 2)) }
| primitive_type REF      { PVref $1 }
| primitive_type          { PVpure $1 }
| LEFTPAR type_v RIGHTPAR { $2 }
;

type_c:
| LEFTB opt_assertion RIGHTB result effects LEFTB opt_post_condition RIGHTB
   { let id,v = $4 in
     { pc_result_name = id; pc_result_type = v;
       pc_effect = $5; pc_pre = list_of_some $2; pc_post = $7 } }
| type_v
   { ptype_c_of_v $1 }
;

result:
| RETURNS ident COLON type_v { $2, $4 }
| type_v                     { Ident.result, $1 }
;

effects:
| opt_reads opt_writes opt_raises
    { { pe_reads = $1; pe_writes = $2; pe_raises = $3 } }
;

opt_reads:
| /* epsilon * /               { [] }
| READS list0_ident_sep_comma { $2 }
;

opt_writes:
| /* epsilon * /                { [] }
| WRITES list0_ident_sep_comma { $2 }
;

opt_raises:
| /* epsilon * /                { [] }
| RAISES list0_ident_sep_comma { $2 }
;

opt_assertion:
| /* epsilon * /  { None }
| assertion      { Some $1 }
;

assertion:
| lexpr          
    { { pa_name = Anonymous; pa_value = $1; pa_loc = loc () } }
| lexpr AS ident 
    { { pa_name = Name $3; pa_value = $1; pa_loc = loc () } }
;

opt_post_condition:
| /* epsilon * /  { None }
| post_condition { Some $1 }
;

post_condition:
| assertion 
   { $1, [] }
| assertion BAR list1_exn_condition_sep_bar
   { $1, $3 }
| BAR list1_exn_condition_sep_bar
   { Format.eprintf "%awarning: no postcondition; false inserted@\n" 
       Loc.report_position (loc ());
     (* if Options.werror then exit 1; *)
     ({ pa_name = Anonymous; pa_value = mk_pp PPfalse; pa_loc = loc () }, $2) }
;

bracket_assertion:
| LEFTB assertion RIGHTB { $2 }
;

list1_bracket_assertion:
| bracket_assertion                         { [$1] }
| bracket_assertion list1_bracket_assertion { $1 :: $2 }
;

list0_bracket_assertion:
| /* epsilon * /           { [] }
| LEFTB RIGHTB            { [] }
| list1_bracket_assertion { $1 }
;

list1_exn_condition_sep_bar:
| exn_condition                                 { [$1] }
| exn_condition BAR list1_exn_condition_sep_bar { $1 :: $3 }
;

exn_condition:
| ident BIGARROW assertion { $1,$3 }
;

expr:
| simple_expr %prec prec_simple 
   { $1 }
| ident COLONEQUAL expr
   { locate 
       (Sapp (locate (Sapp (locate (Svar Ident.ref_set), 
			    locate_i 1 (Svar $1))),
	      $3)) }
| ident LEFTSQ expr RIGHTSQ COLONEQUAL expr
   { locate 
       (Sapp (locate 
		(Sapp (locate 
			 (Sapp (locate (Svar Ident.array_set), 
				locate_i 1 (Svar $1))),
			 $3)),
		$6)) }
| IF expr THEN expr ELSE expr
   { locate (Sif ($2, $4, $6)) }
| IF expr THEN expr %prec prec_no_else
   { locate (Sif ($2, $4, locate (Sconst ConstUnit))) }
| WHILE expr DO invariant_variant expr DONE
   { (* syntactic suget for
        try loop { invariant variant } if b then e else raise Exit
        with Exit -> void end *)
     let inv,var = $4 in
     locate 
       (Stry
	  (locate 
	     (Sloop (inv, var, 
		     locate 
		       (Sif ($2, $5,
			     locate (Sraise (exit_exn, None, None)))))),
	     [((exit_exn, None), locate (Sconst ConstUnit))])) }
| IDENT COLON expr
   { locate (Slabel ($1, $3)) }
| LET ident EQUAL expr IN expr
   { locate (Sletin ($2, $4, $6)) }
| LET ident EQUAL REF expr IN expr
   { locate (Sletref ($2, $5, $7)) }
| FUN binders ARROW list0_bracket_assertion expr %prec prec_fun
   { locate (Slam ($2, $4, force_function_post $5)) }
| LET ident binders EQUAL list0_bracket_assertion expr IN expr
   { let b =  force_function_post ~warn:true $6 in
     locate (Sletin ($2, locate (Slam ($3, $5, b)), $8)) }
| LET REC recfun %prec prec_letrec
   { let _loc,p = $3 in locate p }
| LET REC recfun IN expr
   { let _loc,p = $3 in locate (Sletin (rec_name p, locate p, $5)) }
| RAISE ident opt_cast
   { locate (Sraise ($2, None, $3)) }
| RAISE LEFTPAR ident expr RIGHTPAR opt_cast
   { locate (Sraise ($3, Some $4 , $6)) }
| TRY expr WITH bar_ list1_handler_sep_bar END
   { locate (Stry ($2, $5)) }
| ABSURD opt_cast
   { locate (Sabsurd $2) }
| simple_expr list1_simple_expr %prec prec_app
   { locate (app $1 $2) }
| expr BARBAR expr
   { locate (Slazy_or ($1, $3))
     (* let ptrue = locate (Sconst (ConstBool true)) in
     locate (Sif ($1, ptrue, $3)) *) }
| expr AMPAMP expr
   { locate (Slazy_and ($1, $3))
     (* let pf = locate (Sconst (ConstBool false)) in
     locate (Sif ($1, $3, pf)) *) }
| NOT expr
   { locate (Snot $2)
     (* let pf = locate (Sconst (ConstBool false)) in
     let pt = locate (Sconst (ConstBool true)) in
     locate (Sif ($2, pf, pt)) *) }
| expr relation_id expr %prec prec_relation
   { bin_op $2 $1 $3 }
| expr PLUS expr
   { bin_op (loc_i 2, Ident.t_add) $1 $3 }
| expr MINUS expr
   { bin_op (loc_i 2, Ident.t_sub) $1 $3 }
| expr TIMES expr
   { bin_op (loc_i 2, Ident.t_mul) $1 $3 }
| expr SLASH expr
   { bin_op (loc_i 2, Ident.t_div) $1 $3 }
| expr PERCENT expr
   { bin_op (loc_i 2, Ident.t_mod_int) $1 $3 }
| MINUS expr %prec uminus
   { un_op (loc_i 1, Ident.t_neg) $2 }
| expr SEMICOLON expr
   { locate (Sseq ($1, $3)) }
| ASSERT list1_bracket_assertion SEMICOLON expr 
   { locate (Sassert (`ASSERT,$2, $4)) }
| CHECK list1_bracket_assertion SEMICOLON expr 
   { locate (Sassert (`CHECK,$2, $4)) }
| expr LEFTB post_condition RIGHTB
   { locate (Spost ($1, $3, Transparent)) }
| expr LEFTBLEFTB post_condition RIGHTBRIGHTB
   { locate (Spost ($1, $3, Opaque)) }
;

simple_expr:
| ident %prec prec_ident
   { locate (Svar $1) }
| INTEGER
   { locate (Sconst (ConstInt $1)) }
| FLOAT
   { let f = $1 in locate (Sconst (ConstFloat f)) }
| VOID
   { locate (Sconst ConstUnit) }
| TRUE
   { locate (Sconst (ConstBool true)) }
| FALSE
   { locate (Sconst (ConstBool false)) }
| BANG ident
   { locate (Sderef $2) }
| ident LEFTSQ expr RIGHTSQ
   { locate 
       (Sapp (locate (Sapp (locate (Svar Ident.array_get), 
			    locate_i 1 (Svar $1))),
	      $3)) }
| LEFTSQ type_c RIGHTSQ
   { locate (Sany $2) }
| LEFTPAR expr RIGHTPAR
   { $2 }
| BEGIN expr END
   { $2 }
;

relation_id:
| LT    { loc (), Ident.t_lt }
| LE    { loc (), Ident.t_le }
| GT    { loc (), Ident.t_gt }
| GE    { loc (), Ident.t_ge }
| EQUAL { loc (), Ident.t_eq }
| NOTEQ { loc (), Ident.t_neq }
;

list1_simple_expr:
| simple_expr %prec prec_simple { [$1] }
| simple_expr list1_simple_expr { $1 :: $2 }
;

list1_handler_sep_bar:
| handler                           { [$1] }
| handler BAR list1_handler_sep_bar { $1 :: $3 }
;

handler:
| ident ARROW expr       { (($1, None), $3) }
| ident ident ARROW expr { (($1, Some $2), $4) }
;

opt_cast:
| /* epsilon * / { None }
| COLON type_v  { Some $2 }
;

invariant_variant:
| /* epsilon * / { None, None }
| LEFTB opt_invariant RIGHTB { $2, None }
| LEFTB opt_invariant VARIANT variant RIGHTB { $2, Some $4 }
;

opt_invariant:
| /* epsilon * /       { None }
| INVARIANT assertion { Some $2 }
;

recfun:
| ident binders COLON type_v opt_variant EQUAL 
  list0_bracket_assertion expr %prec prec_recfun
   { (loc_i 1),Srec ($1, $2, $4, $5, $7, force_function_post $8) }
;

opt_variant:
| LEFTB VARIANT variant RIGHTB { Some $3 } 
| /* epsilon * /                { None }
;

variant:
| lexpr FOR ident { ($1, $3) }
| lexpr           { ($1, Ident.t_zwf_zero) }
;

binders:
| list1_binder { List.flatten $1 }
;

list1_binder:
| binder              { [$1] }
| binder list1_binder { $1 :: $2 }
;

binder:
| LEFTPAR RIGHTPAR
   { [Ident.anonymous, PVpure PPTunit] }
| LEFTPAR list1_ident_sep_comma COLON type_v RIGHTPAR 
   { List.map (fun s -> (s, $4)) $2 }
;

****/