mergesort_list.mlw 5.4 KB
 Jean-Christophe Filliatre committed Apr 03, 2011 1 `````` `````` Jean-Christophe Filliatre committed Mar 29, 2014 2 3 4 5 ``````(** Sorting a list of integers using mergesort Author: Jean-Christophe Filliâtre (CNRS) *) `````` Jean-Christophe Filliatre committed Apr 03, 2011 6 `````` `````` Jean-Christophe Filliatre committed Mar 28, 2014 7 ``````module Elt `````` 8 `````` `````` Jean-Christophe Filliatre committed Mar 28, 2014 9 10 11 12 `````` use export int.Int use export list.Length use export list.Append use export list.Permut `````` 13 `````` `````` Jean-Christophe Filliatre committed Mar 28, 2014 14 15 16 17 18 19 20 `````` type elt predicate le elt elt clone relations.TotalPreOrder with type t = elt, predicate rel = le clone export list.Sorted with type t = elt, predicate le = le end `````` Jean-Christophe Filliatre committed Mar 29, 2014 21 ``````module Merge (* : MergeSpec *) `````` Jean-Christophe Filliatre committed Mar 28, 2014 22 `````` `````` Jean-Christophe Filliatre committed Mar 29, 2014 23 `````` clone export Elt `````` Jean-Christophe Filliatre committed Mar 28, 2014 24 25 26 `````` let rec merge (l1 l2: list elt) : list elt requires { sorted l1 /\ sorted l2 } `````` Jean-Christophe Filliatre committed Mar 29, 2014 27 28 `````` ensures { sorted result } ensures { permut result (l1 ++ l2) } `````` Jean-Christophe Filliatre committed Mar 28, 2014 29 30 31 32 33 34 35 36 37 38 `````` variant { length l1 + length l2 } = match l1, l2 with | Nil, _ -> l2 | _, Nil -> l1 | Cons x1 r1, Cons x2 r2 -> if le x1 x2 then Cons x1 (merge r1 l2) else Cons x2 (merge l1 r2) end end `````` Jean-Christophe Filliatre committed Mar 29, 2014 39 ``````(** tail recursive implementation *) `````` Jean-Christophe Filliatre committed Mar 28, 2014 40 `````` `````` Jean-Christophe Filliatre committed Mar 29, 2014 41 42 43 ``````module EfficientMerge (* : MergeSpec *) clone export Elt `````` Jean-Christophe Filliatre committed Mar 28, 2014 44 45 46 47 `````` use import list.Mem use import list.Reverse use import list.RevAppend `````` Jean-Christophe Filliatre committed Mar 29, 2014 48 49 50 51 `````` lemma sorted_reverse_cons: forall acc x1. sorted (reverse acc) -> (forall x. mem x acc -> le x x1) -> sorted (reverse (Cons x1 acc)) `````` Jean-Christophe Filliatre committed Mar 28, 2014 52 53 54 55 `````` let rec merge_aux (acc l1 l2: list elt) : list elt requires { sorted (reverse acc) /\ sorted l1 /\ sorted l2 } requires { forall x y: elt. mem x acc -> mem y l1 -> le x y } requires { forall x y: elt. mem x acc -> mem y l2 -> le x y } `````` Jean-Christophe Filliatre committed Mar 29, 2014 56 57 `````` ensures { sorted result } ensures { permut result (acc ++ l1 ++ l2) } `````` Jean-Christophe Filliatre committed Mar 28, 2014 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 `````` variant { length l1 + length l2 } = match l1, l2 with | Nil, _ -> rev_append acc l2 | _, Nil -> rev_append acc l1 | Cons x1 r1, Cons x2 r2 -> if le x1 x2 then merge_aux (Cons x1 acc) r1 l2 else merge_aux (Cons x2 acc) l1 r2 end let merge (l1 l2: list elt) : list elt requires { sorted l1 /\ sorted l2 } ensures { sorted result /\ permut result (l1 ++ l2) } = merge_aux Nil l1 l2 end module Mergesort `````` Jean-Christophe Filliatre committed Mar 29, 2014 77 `````` clone import Merge `````` Jean-Christophe Filliatre committed Mar 28, 2014 78 79 `````` let split (l0: list 'a) : (list 'a, list 'a) `````` Andrei Paskevich committed Oct 13, 2012 80 `````` requires { length l0 >= 2 } `````` Jean-Christophe Filliatre committed Mar 28, 2014 81 `````` ensures { let (l1, l2) = result in `````` Andrei Paskevich committed Oct 13, 2012 82 `````` 1 <= length l1 /\ 1 <= length l2 /\ permut l0 (l1 ++ l2) } `````` Jean-Christophe Filliatre committed Mar 28, 2014 83 `````` = let rec split_aux (l1 l2 l: list 'a) : (list 'a, list 'a) `````` Andrei Paskevich committed Oct 13, 2012 84 `````` requires { length l2 = length l1 \/ length l2 = length l1 + 1 } `````` Jean-Christophe Filliatre committed Mar 28, 2014 85 `````` ensures { let r1, r2 = result in `````` Andrei Paskevich committed Oct 13, 2012 86 87 `````` (length r2 = length r1 \/ length r2 = length r1 + 1) /\ permut (r1 ++ r2) (l1 ++ (l2 ++ l)) } `````` Jean-Christophe Filliatre committed Mar 28, 2014 88 `````` variant { length l } `````` Andrei Paskevich committed Oct 13, 2012 89 `````` = match l with `````` Jean-Christophe Filliatre committed Apr 03, 2011 90 91 92 93 94 `````` | Nil -> (l1, l2) | Cons x r -> split_aux l2 (Cons x l1) r end in split_aux Nil Nil l0 `````` Jean-Christophe Filliatre committed May 20, 2011 95 `````` `````` Jean-Christophe Filliatre committed Mar 28, 2014 96 `````` let rec mergesort (l: list elt) : list elt `````` Andrei Paskevich committed Oct 13, 2012 97 `````` ensures { sorted result /\ permut result l } `````` Jean-Christophe Filliatre committed Mar 28, 2014 98 `````` variant { length l } `````` Andrei Paskevich committed Oct 13, 2012 99 `````` = match l with `````` Jean-Christophe Filliatre committed Apr 03, 2011 100 101 `````` | Nil | Cons _ Nil -> l | _ -> let l1, l2 = split l in merge (mergesort l1) (mergesort l2) `````` 102 103 `````` end `````` Jean-Christophe Filliatre committed Dec 29, 2010 104 ``````end `````` Jean-Christophe Filliatre committed Mar 31, 2014 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 `````` module OCamlMergesort clone export Elt use import list.Mem use import list.Reverse use import list.RevAppend function prefix int (list 'a) : list 'a axiom prefix_def1: forall l: list 'a. prefix 0 l = Nil axiom prefix_def2: forall n: int, x: 'a, l: list 'a. n > 0 -> prefix n (Cons x l) = Cons x (prefix (n-1) l) let rec chop (n: int) (l: list 'a) : list 'a requires { 0 <= n <= length l } ensures { l = prefix n l ++ result } variant { n } = if n = 0 then l else match l with | Cons _ t -> chop (n-1) t | Nil -> absurd end lemma sorted_reverse_cons: forall acc x1. sorted (reverse acc) -> (forall x. mem x acc -> le x x1) -> sorted (reverse (Cons x1 acc)) lemma sorted_rev_append: forall acc l: list elt. sorted (reverse acc) -> sorted l -> (forall x y. mem x acc -> mem y l -> le x y) -> sorted (reverse (rev_append l acc)) let rec rev_merge (l1 l2 accu: list elt) : list elt requires { sorted (reverse accu) /\ sorted l1 /\ sorted l2 } requires { forall x y: elt. mem x accu -> mem y l1 -> le x y } requires { forall x y: elt. mem x accu -> mem y l2 -> le x y } ensures { sorted (reverse result) } ensures { permut result (accu ++ l1 ++ l2) } variant { length l1 + length l2 } = match l1, l2 with | Nil, _ -> rev_append l2 accu | _, Nil -> rev_append l1 accu | Cons h1 t1, Cons h2 t2 -> if le h1 h2 then rev_merge t1 l2 (Cons h1 accu) else rev_merge l1 t2 (Cons h2 accu) end lemma sorted_reverse_cons2: forall x l. sorted (reverse (Cons x l)) -> sorted (reverse l) let rec rev_merge_rev (l1 l2 accu: list elt) : list elt requires { sorted accu /\ sorted (reverse l1) /\ sorted (reverse l2) } requires { forall x y: elt. mem x accu -> mem y l1 -> le y x } requires { forall x y: elt. mem x accu -> mem y l2 -> le y x } ensures { sorted result } ensures { permut result (accu ++ l1 ++ l2) } variant { length l1 + length l2 } = match l1, l2 with | Nil, _ -> rev_append l2 accu | _, Nil -> rev_append l1 accu | Cons h1 t1, Cons h2 t2 -> if not (le h1 h2) then rev_merge_rev t1 l2 (Cons h1 accu) else rev_merge_rev l1 t2 (Cons h2 accu) end val sort (n: int) (l: list elt) : list elt requires { 2 <= n <= length l } ensures { sorted result } ensures { permut result (prefix n l) } lemma permut_prefix: forall l: list elt. permut (prefix (length l) l) l let mergesort (l: list elt) : list elt ensures { sorted result /\ permut result l } = let n = length l in if n < 2 then l else sort n l end``````