parser.mly 31.9 KB
Newer Older
1 2 3
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
Andrei Paskevich's avatar
Andrei Paskevich committed
4
(*  Copyright 2010-2016   --   INRIA - CNRS - Paris-Sud University  *)
5 6 7 8
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
9
(*                                                                  *)
10
(********************************************************************)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
11 12

%{
13
module Increment = struct
14 15 16 17 18 19 20
  let stack = Stack.create ()
  let open_file inc = Stack.push inc stack
  let close_file () = ignore (Stack.pop stack)
  let open_theory id = (Stack.top stack).Ptree.open_theory id
  let close_theory () = (Stack.top stack).Ptree.close_theory ()
  let open_module id = (Stack.top stack).Ptree.open_module id
  let close_module () = (Stack.top stack).Ptree.close_module ()
21 22
  let open_namespace n = (Stack.top stack).Ptree.open_namespace n
  let close_namespace l b = (Stack.top stack).Ptree.close_namespace l b
23 24 25
  let new_decl loc d = (Stack.top stack).Ptree.new_decl loc d
  let new_pdecl loc d = (Stack.top stack).Ptree.new_pdecl loc d
  let use_clone loc use = (Stack.top stack).Ptree.use_clone loc use
26
end
27

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
28 29
  open Ptree

30
  let infix  s = "infix "  ^ s
31
  let prefix s = "prefix " ^ s
32
  let mixfix s = "mixfix " ^ s
33

34
  let qualid_last = function Qident x | Qdot (_, x) -> x.id_str
35

36
  let floc s e = Loc.extract (s,e)
37

38
  let model_label = Ident.create_label "model"
39
  let model_projected = Ident.create_label "model_projected"
40 41 42 43 44

  let is_model_label l =
    match l with
    | Lpos _ -> false
    | Lstr lab ->
45 46
      (lab = model_label) || (lab = model_projected)

47

48
  let model_lab_present labels =
49 50 51 52 53 54 55 56 57 58 59
    try
      ignore(List.find is_model_label labels);
      true
    with Not_found ->
      false

  let model_trace_regexp = Str.regexp "model_trace:"

  let is_model_trace_label l =
    match l with
    | Lpos _ -> false
60
    | Lstr lab ->
61
      try
62
	ignore(Str.search_forward model_trace_regexp lab.Ident.lab_string 0);
63 64 65 66 67 68 69 70 71 72 73
	true
      with Not_found -> false

  let model_trace_lab_present labels =
    try
      ignore(List.find is_model_trace_label labels);
      true
    with Not_found ->
      false

  let add_model_trace name labels =
74
    if (model_lab_present labels) && (not (model_trace_lab_present labels)) then
75 76
      (Lstr (Ident.create_label ("model_trace:" ^ name)))::labels
    else
77
      labels
78 79 80 81

  let add_lab id l =
    let l = add_model_trace id.id_str l in
    { id with id_lab = l }
82

83
  let id_anonymous loc = { id_str = "_"; id_lab = []; id_loc = loc }
84

85
  let mk_id id s e = { id_str = id; id_lab = []; id_loc = floc s e }
86

87 88
  let get_op s e = Qident (mk_id (mixfix "[]") s e)
  let set_op s e = Qident (mk_id (mixfix "[<-]") s e)
89 90 91
  let sub_op s e = Qident (mk_id (mixfix "[_.._]") s e)
  let above_op s e = Qident (mk_id (mixfix "[_..]") s e)
  let below_op s e = Qident (mk_id (mixfix "[.._]") s e)
92

93 94
  let mk_pat  d s e = { pat_desc  = d; pat_loc  = floc s e }
  let mk_term d s e = { term_desc = d; term_loc = floc s e }
95
  let mk_expr d s e = { expr_desc = d; expr_loc = floc s e }
96

97 98 99
  let variant_union v1 v2 = match v1, v2 with
    | _, [] -> v1
    | [], _ -> v2
100
    | _, ({term_loc = loc},_)::_ -> Loc.errorm ~loc
101 102 103 104 105 106
        "multiple `variant' clauses are not allowed"

  let empty_spec = {
    sp_pre     = [];
    sp_post    = [];
    sp_xpost   = [];
107
    sp_reads   = [];
108 109
    sp_writes  = [];
    sp_variant = [];
110 111
    sp_checkrw = false;
    sp_diverge = false;
112
  }
113

114 115 116 117
  let spec_union s1 s2 = {
    sp_pre     = s1.sp_pre @ s2.sp_pre;
    sp_post    = s1.sp_post @ s2.sp_post;
    sp_xpost   = s1.sp_xpost @ s2.sp_xpost;
118
    sp_reads   = s1.sp_reads @ s2.sp_reads;
119 120
    sp_writes  = s1.sp_writes @ s2.sp_writes;
    sp_variant = variant_union s1.sp_variant s2.sp_variant;
121 122
    sp_checkrw = s1.sp_checkrw || s2.sp_checkrw;
    sp_diverge = s1.sp_diverge || s2.sp_diverge;
123
  }
124

125
(* dead code
126
  let add_init_mark e =
127
    let init = { id_str = "Init"; id_lab = []; id_loc = e.expr_loc } in
128
    { e with expr_desc = Emark (init, e) }
129
*)
130

131
  let small_integer i =
132
    try match i with
133 134 135 136
      | Number.IConstDec s -> int_of_string s
      | Number.IConstHex s -> int_of_string ("0x"^s)
      | Number.IConstOct s -> int_of_string ("0o"^s)
      | Number.IConstBin s -> int_of_string ("0b"^s)
137
    with Failure _ -> raise Error
138

139 140
  let error_param loc =
    Loc.errorm ~loc "cannot determine the type of the parameter"
141

142 143 144 145 146
  let error_loc loc = Loc.error ~loc Error

  let () = Exn_printer.register (fun fmt exn -> match exn with
    | Error -> Format.fprintf fmt "syntax error"
    | _ -> raise exn)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
147 148
%}

149
(* Tokens *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
150

151
%token <string> LIDENT UIDENT
152
%token <Ptree.integer_constant> INTEGER
153
%token <string> OP1 OP2 OP3 OP4 OPPREF
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
154 155
%token <Ptree.real_constant> FLOAT
%token <string> STRING
156
%token <Loc.position> POSITION
157
%token <string> QUOTE_UIDENT QUOTE_LIDENT OPAQUE_QUOTE_LIDENT
158

159
(* keywords *)
160

Martin Clochard's avatar
Martin Clochard committed
161
%token AS AXIOM BY CLONE COINDUCTIVE CONSTANT
Andrei Paskevich's avatar
Andrei Paskevich committed
162 163 164
%token ELSE END EPSILON EXISTS EXPORT FALSE FORALL FUNCTION
%token GOAL IF IMPORT IN INDUCTIVE LEMMA
%token LET MATCH META NAMESPACE NOT PROP PREDICATE
Martin Clochard's avatar
Martin Clochard committed
165
%token SO THEN THEORY TRUE TYPE USE WITH
166

167
(* program keywords *)
168

169 170 171 172 173
%token ABSTRACT ABSURD ANY ASSERT ASSUME BEGIN CHECK
%token DIVERGES DO DONE DOWNTO ENSURES EXCEPTION FOR
%token FUN GHOST INVARIANT LOOP MODEL MODULE MUTABLE
%token PRIVATE RAISE RAISES READS REC REQUIRES RETURNS
%token TO TRY VAL VARIANT WHILE WRITES
174

175
(* symbols *)
176

Andrei Paskevich's avatar
Andrei Paskevich committed
177
%token AND ARROW
178
%token BAR
179
%token COLON COMMA
180
%token DOT DOTDOT EQUAL LAMBDA LTGT
181
%token LEFTPAR LEFTPAR_STAR_RIGHTPAR LEFTSQ
182
%token LARROW LRARROW OR
183
%token RIGHTPAR RIGHTSQ
Andrei Paskevich's avatar
Andrei Paskevich committed
184
%token UNDERSCORE
185 186 187

%token EOF

188
(* program symbols *)
189

190
%token AMPAMP BARBAR LEFTBRC RIGHTBRC SEMICOLON
191

192
(* Precedences *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
193

194
%nonassoc IN
195 196 197
%nonassoc below_SEMI
%nonassoc SEMICOLON
%nonassoc LET VAL
198
%nonassoc prec_no_else
199
%nonassoc DOT ELSE GHOST
200
%nonassoc prec_named
201
%nonassoc COLON
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
202

Andrei Paskevich's avatar
Andrei Paskevich committed
203
%right ARROW LRARROW
Martin Clochard's avatar
Martin Clochard committed
204
%right BY SO
205 206
%right OR BARBAR
%right AND AMPAMP
Andrei Paskevich's avatar
Andrei Paskevich committed
207
%nonassoc NOT
208
%left EQUAL LTGT OP1
209
%nonassoc LARROW
210
%nonassoc RIGHTSQ    (* stronger than <- for e1[e2 <- e3] *)
211
%left OP2
212
%left OP3
213
%left OP4
214
%nonassoc prec_prefix_op
215 216
%nonassoc LEFTSQ
%nonassoc OPPREF
217

218
(* Entry points *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
219

220 221
%start <Ptree.incremental -> unit> open_file
%start <unit> logic_file program_file
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
222 223
%%

224 225
(* Theories, modules, namespaces *)

226
open_file:
227
(* Dummy token. Menhir does not accept epsilon. *)
228
| EOF { Increment.open_file }
229

230
logic_file:
231
| theory* EOF   { Increment.close_file () }
232

233
program_file:
234
| theory_or_module* EOF { Increment.close_file () }
235

236
theory:
237
| theory_head theory_decl* END  { Increment.close_theory () }
238

239 240
theory_or_module:
| theory                        { () }
241
| module_head module_decl* END  { Increment.close_module () }
242

243
theory_head:
244
| THEORY labels(uident)  { Increment.open_theory $2 }
245

246
module_head:
247
| MODULE labels(uident)  { Increment.open_module $2 }
248

249
theory_decl:
250 251
| decl            { Increment.new_decl  (floc $startpos $endpos) $1 }
| use_clone       { Increment.use_clone (floc $startpos $endpos) $1 }
252
| namespace_head theory_decl* END
253
    { Increment.close_namespace (floc $startpos($1) $endpos($1)) $1 }
254

255
module_decl:
256 257 258
| decl            { Increment.new_decl  (floc $startpos $endpos) $1 }
| pdecl           { Increment.new_pdecl (floc $startpos $endpos) $1 }
| use_clone       { Increment.use_clone (floc $startpos $endpos) $1 }
259
| namespace_head module_decl* END
260
    { Increment.close_namespace (floc $startpos($1) $endpos($1)) $1 }
261

262 263
namespace_head:
| NAMESPACE boption(IMPORT) uident
264
   { Increment.open_namespace $3.id_str; $2 }
265

266
(* Use and clone *)
267

268
use_clone:
269 270 271
| USE use                                 { ($2, None) }
| CLONE use                               { ($2, Some []) }
| CLONE use WITH comma_list1(clone_subst) { ($2, Some $4) }
272

273
use:
274
| boption(IMPORT) tqualid
275
    { { use_theory = $2; use_import = Some ($1, qualid_last $2) } }
276 277
| boption(IMPORT) tqualid AS uident
    { { use_theory = $2; use_import = Some ($1, $4.id_str) } }
278 279
| EXPORT tqualid
    { { use_theory = $2; use_import = None } }
280

281
clone_subst:
282 283
| NAMESPACE ns EQUAL ns         { CSns    (floc $startpos $endpos, $2,$4) }
| TYPE qualid ty_var* EQUAL ty  { CStsym  (floc $startpos $endpos, $2,$3,$5) }
284 285 286 287 288 289
| CONSTANT  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| FUNCTION  qualid EQUAL qualid { CSfsym  (floc $startpos $endpos, $2,$4) }
| PREDICATE qualid EQUAL qualid { CSpsym  (floc $startpos $endpos, $2,$4) }
| VAL       qualid EQUAL qualid { CSvsym  (floc $startpos $endpos, $2,$4) }
| LEMMA     qualid              { CSlemma (floc $startpos $endpos, $2) }
| GOAL      qualid              { CSgoal  (floc $startpos $endpos, $2) }
290

291 292 293
ns:
| uqualid { Some $1 }
| DOT     { None }
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308
(* Theory declarations *)

decl:
| TYPE with_list1(type_decl)                { Dtype $2 }
| TYPE late_invariant                       { Dtype [$2] }
| CONSTANT  constant_decl                   { Dlogic [$2] }
| FUNCTION  function_decl  with_logic_decl* { Dlogic ($2::$3) }
| PREDICATE predicate_decl with_logic_decl* { Dlogic ($2::$3) }
| INDUCTIVE   with_list1(inductive_decl)    { Dind (Decl.Ind, $2) }
| COINDUCTIVE with_list1(inductive_decl)    { Dind (Decl.Coind, $2) }
| AXIOM labels(ident) COLON term            { Dprop (Decl.Paxiom, $2, $4) }
| LEMMA labels(ident) COLON term            { Dprop (Decl.Plemma, $2, $4) }
| GOAL  labels(ident) COLON term            { Dprop (Decl.Pgoal, $2, $4) }
| META sident comma_list1(meta_arg)         { Dmeta ($2, $3) }
309 310

meta_arg:
311 312 313 314 315 316 317
| TYPE      ty      { Mty $2 }
| CONSTANT  qualid  { Mfs $2 }
| FUNCTION  qualid  { Mfs $2 }
| PREDICATE qualid  { Mps $2 }
| PROP      qualid  { Mpr $2 }
| STRING            { Mstr $1 }
| INTEGER           { Mint (small_integer $1) }
318 319

(* Type declarations *)
320 321

type_decl:
322
| labels(lident) ty_var* typedefn
323
  { let model, vis, def, inv = $3 in
324
    let vis = if model then Abstract else vis in
325 326 327
    { td_ident = $1; td_params = $2;
      td_model = model; td_vis = vis; td_def = def;
      td_inv = inv; td_loc = floc $startpos $endpos } }
328

329
late_invariant:
330
| labels(lident) ty_var* invariant+
331 332 333
  { { td_ident = $1; td_params = $2;
      td_model = false; td_vis = Public; td_def = TDabstract;
      td_inv = $3; td_loc = floc $startpos $endpos } }
334

335
ty_var:
336
| labels(quote_lident) { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
337 338

typedefn:
339
| (* epsilon *)
340
    { false, Public, TDabstract, [] }
341
| model abstract bar_list1(type_case) invariant*
342
    { $1, $2, TDalgebraic $3, $4 }
343
| model abstract LEFTBRC semicolon_list1(type_field) RIGHTBRC invariant*
344
    { $1, $2, TDrecord $4, $6 }
345 346
| model abstract ty invariant*
    { $1, $2, TDalias $3, $4 }
347

348 349 350 351 352
model:
| EQUAL         { false }
| MODEL         { true }

abstract:
353
| (* epsilon *) { Public }
354 355
| PRIVATE       { Private }
| ABSTRACT      { Abstract }
356

357 358 359 360
type_field:
| field_modifiers labels(lident) cast
  { { f_ident = $2; f_mutable = fst $1; f_ghost = snd $1;
      f_pty = $3; f_loc = floc $startpos $endpos } }
361

362
field_modifiers:
363
| (* epsilon *) { false, false }
364 365 366 367 368
| MUTABLE       { true,  false }
| GHOST         { false, true  }
| GHOST MUTABLE { true,  true  }
| MUTABLE GHOST { true,  true  }

369
type_case:
370
| labels(uident) params { floc $startpos $endpos, $1, $2 }
371

372
(* Logic declarations *)
373

374 375
constant_decl:
| labels(lident_rich) cast preceded(EQUAL,term)?
376 377
  { { ld_ident = $1; ld_params = []; ld_type = Some $2;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
378

379 380
function_decl:
| labels(lident_rich) params cast preceded(EQUAL,term)?
381 382
  { { ld_ident = $1; ld_params = $2; ld_type = Some $3;
      ld_def = $4; ld_loc = floc $startpos $endpos } }
Andrei Paskevich's avatar
Andrei Paskevich committed
383

384 385
predicate_decl:
| labels(lident_rich) params preceded(EQUAL,term)?
386 387
  { { ld_ident = $1; ld_params = $2; ld_type = None;
      ld_def = $3; ld_loc = floc $startpos $endpos } }
388

389
with_logic_decl:
390
| WITH labels(lident_rich) params cast? preceded(EQUAL,term)?
391 392
  { { ld_ident = $2; ld_params = $3; ld_type = $4;
      ld_def = $5; ld_loc = floc $startpos $endpos } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
393

394
(* Inductive declarations *)
395 396

inductive_decl:
397
| labels(lident_rich) params ind_defn
398 399
  { { in_ident = $1; in_params = $2;
      in_def = $3; in_loc = floc $startpos $endpos } }
400

401 402 403
ind_defn:
| (* epsilon *)             { [] }
| EQUAL bar_list1(ind_case) { $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
404

405 406
ind_case:
| labels(ident) COLON term  { floc $startpos $endpos, $1, $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
407

408
(* Type expressions *)
409

410 411 412 413
ty:
| ty_arg          { $1 }
| lqualid ty_arg+ { PTtyapp ($1, $2) }
| ty ARROW ty     { PTarrow ($1, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
414

415 416 417 418 419 420 421
ty_arg:
| lqualid                           { PTtyapp ($1, []) }
| quote_lident                      { PTtyvar ($1, false) }
| opaque_quote_lident               { PTtyvar ($1, true) }
| LEFTPAR comma_list2(ty) RIGHTPAR  { PTtuple $2 }
| LEFTPAR RIGHTPAR                  { PTtuple [] }
| LEFTPAR ty RIGHTPAR               { PTparen $2 }
422

423 424
cast:
| COLON ty  { $2 }
425

426
(* Parameters and binders *)
427

428 429
(* [param] and [binder] below must have the same grammar
   and raise [Error] in the same cases. Interpretaion of
430 431
   single-standing untyped [Qident]'s is different: [param]
   treats them as type expressions, [binder], as parameter
432 433
   names, whose type must be inferred. *)

434
params:  param*  { List.concat $1 }
435

436
binders: binder+ { List.concat $1 }
437 438 439

param:
| anon_binder
440 441 442 443 444 445 446 447
    { error_param (floc $startpos $endpos) }
| ty_arg
    { [floc $startpos $endpos, None, false, $1] }
| LEFTPAR GHOST ty RIGHTPAR
    { [floc $startpos $endpos, None, true, $3] }
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident _, []) ->
448 449
             error_param (floc $startpos $endpos)
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
450
| LEFTPAR binder_vars_rest RIGHTPAR
451
    { match $2 with [l,_] -> error_param l
452
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
453
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
454
    { match $3 with [l,_] -> error_param l
455 456
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
457
    { List.map (fun (l,i) -> l, i, false, $3) $2 }
458
| LEFTPAR GHOST binder_vars cast RIGHTPAR
459
    { List.map (fun (l,i) -> l, i, true, $4) $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
460

461 462
binder:
| anon_binder
463 464 465 466 467
    { error_param (floc $startpos $endpos) }
| ty_arg
    { match $1 with
      | PTtyapp (Qident id, [])
      | PTparen (PTtyapp (Qident id, [])) ->
468 469
             [floc $startpos $endpos, Some id, false, None]
      | _ -> [floc $startpos $endpos, None, false, Some $1] }
470 471 472
| LEFTPAR GHOST ty RIGHTPAR
    { match $3 with
      | PTtyapp (Qident id, []) ->
473 474
             [floc $startpos $endpos, Some id, true, None]
      | _ -> [floc $startpos $endpos, None, true, Some $3] }
475 476 477
| ty_arg label label*
    { match $1 with
      | PTtyapp (Qident id, []) ->
478 479 480
             let id = add_lab id ($2::$3) in
             [floc $startpos $endpos, Some id, false, None]
      | _ -> error_loc (floc $startpos($2) $endpos($2)) }
481
| LEFTPAR binder_vars_rest RIGHTPAR
482
    { match $2 with [l,i] -> [l, i, false, None]
483
      | _ -> error_loc (floc $startpos($3) $endpos($3)) }
484
| LEFTPAR GHOST binder_vars_rest RIGHTPAR
485
    { match $3 with [l,i] -> [l, i, true, None]
486 487
      | _ -> error_loc (floc $startpos($4) $endpos($4)) }
| LEFTPAR binder_vars cast RIGHTPAR
488
    { List.map (fun (l,i) -> l, i, false, Some $3) $2 }
489
| LEFTPAR GHOST binder_vars cast RIGHTPAR
490
    { List.map (fun (l,i) -> l, i, true, Some $4) $3 }
491

492 493 494
binder_vars:
| binder_vars_head  { List.rev $1 }
| binder_vars_rest  { $1 }
495

496
binder_vars_rest:
497 498 499 500 501 502 503
| binder_vars_head label label* binder_var*
    { List.rev_append (match $1 with
        | (l, Some id) :: bl ->
            let l3 = floc $startpos($3) $endpos($3) in
            (Loc.join l l3, Some (add_lab id ($2::$3))) :: bl
        | _ -> assert false) $4 }
| binder_vars_head anon_binder binder_var*
504
   { List.rev_append $1 ($2 :: $3) }
505
| anon_binder binder_var*
506
   { $1 :: $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
507

508
binder_vars_head:
509
| ty {
510 511
    let of_id id = id.id_loc, Some id in
    let push acc = function
512
      | PTtyapp (Qident id, []) -> of_id id :: acc
513
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error in
514
    match $1 with
515
      | PTtyapp (Qident id, l) -> List.fold_left push [of_id id] l
516
      | _ -> Loc.error ~loc:(floc $startpos $endpos) Error }
517

518
binder_var:
519 520
| labels(lident)  { floc $startpos $endpos, Some $1 }
| anon_binder     { $1 }
521 522

anon_binder:
523 524
| UNDERSCORE      { floc $startpos $endpos, None }

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
(* Logical terms *)

mk_term(X): d = X { mk_term d $startpos $endpos }

term: t = mk_term(term_) { t }

term_:
| term_arg_
    { match $1 with (* break the infix relation chain *)
      | Tinfix (l,o,r) -> Tinnfix (l,o,r) | d -> d }
| NOT term
    { Tunop (Tnot, $2) }
| prefix_op term %prec prec_prefix_op
    { Tidapp (Qident $1, [$2]) }
| l = term ; o = bin_op ; r = term
    { Tbinop (l, o, r) }
| l = term ; o = infix_op ; r = term
    { Tinfix (l, o, r) }
| term_arg located(term_arg)+ (* FIXME/TODO: "term term_arg" *)
    { let join f (a,_,e) = mk_term (Tapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).term_desc }
| IF term THEN term ELSE term
    { Tif ($2, $4, $6) }
| LET pattern EQUAL term IN term
    { match $2.pat_desc with
      | Pvar id -> Tlet (id, $4, $6)
      | Pwild -> Tlet (id_anonymous $2.pat_loc, $4, $6)
      | Ptuple [] -> Tlet (id_anonymous $2.pat_loc,
          { $4 with term_desc = Tcast ($4, PTtuple []) }, $6)
554 555 556 557 558
      | Pcast ({pat_desc = Pvar id}, ty) ->
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
      | Pcast ({pat_desc = Pwild}, ty) ->
          let id = id_anonymous $2.pat_loc in
          Tlet (id, { $4 with term_desc = Tcast ($4, ty) }, $6)
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
      | _ -> Tmatch ($4, [$2, $6]) }
| MATCH term WITH match_cases(term) END
    { Tmatch ($2, $4) }
| MATCH comma_list2(term) WITH match_cases(term) END
    { Tmatch (mk_term (Ttuple $2) $startpos($2) $endpos($2), $4) }
| quant comma_list1(quant_vars) triggers DOT term
    { Tquant ($1, List.concat $2, $3, $5) }
| EPSILON
    { Loc.errorm "Epsilon terms are currently not supported in WhyML" }
| label term %prec prec_named
    { Tnamed ($1, $2) }
| term cast
    { Tcast ($1, $2) }

term_arg: mk_term(term_arg_) { $1 }
term_dot: mk_term(term_dot_) { $1 }

term_arg_:
| qualid                    { Tident $1 }
| numeral                   { Tconst $1 }
| TRUE                      { Ttrue }
| FALSE                     { Tfalse }
| quote_uident              { Tident (Qident $1) }
| o = oppref ; a = term_arg { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_dot_:
| lqualid                   { Tident $1 }
| o = oppref ; a = term_dot { Tidapp (Qident o, [a]) }
| term_sub_                 { $1 }

term_sub_:
| term_dot DOT lqualid_rich                         { Tidapp ($3,[$1]) }
| LEFTPAR term RIGHTPAR                             { $2.term_desc }
| LEFTPAR RIGHTPAR                                  { Ttuple [] }
| LEFTPAR comma_list2(term) RIGHTPAR                { Ttuple $2 }
| LEFTBRC field_list1(term) RIGHTBRC                { Trecord $2 }
| LEFTBRC term_arg WITH field_list1(term) RIGHTBRC  { Tupdate ($2,$4) }
| term_arg LEFTSQ term RIGHTSQ
    { Tidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ term LARROW term RIGHTSQ
    { Tidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
601 602 603 604 605 606
| term_arg LEFTSQ term DOTDOT term RIGHTSQ
    { Tidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| term_arg LEFTSQ term DOTDOT RIGHTSQ
    { Tidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ DOTDOT term RIGHTSQ
    { Tidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
607

608 609
field_list1(X):
| fl = semicolon_list1(separated_pair(lqualid, EQUAL, X)) { fl }
610

611 612
match_cases(X):
| cl = bar_list1(separated_pair(pattern, ARROW, X)) { cl }
613

614 615
quant_vars:
| binder_var+ cast? { List.map (fun (l,i) -> l, i, false, $2) $1 }
616

617 618 619
triggers:
| (* epsilon *)                                                 { [] }
| LEFTSQ separated_nonempty_list(BAR,comma_list1(term)) RIGHTSQ { $2 }
620

621 622 623 624 625 626 627
%inline bin_op:
| ARROW   { Timplies }
| LRARROW { Tiff }
| OR      { Tor }
| BARBAR  { Tor_asym }
| AND     { Tand }
| AMPAMP  { Tand_asym }
Martin Clochard's avatar
Martin Clochard committed
628 629
| BY      { Tby }
| SO      { Tso }
630

631 632 633 634
quant:
| FORALL  { Tforall }
| EXISTS  { Texists }
| LAMBDA  { Tlambda }
635

636 637 638
numeral:
| INTEGER { Number.ConstInt $1 }
| FLOAT   { Number.ConstReal $1 }
639

640
(* Program declarations *)
641

642
pdecl:
643
| VAL top_ghost labels(lident_rich) type_v          { Dval ($3, $2, $4) }
644
| LET top_ghost labels(lident_rich) fun_defn        { Dfun ($3, $2, $4) }
645
| LET top_ghost labels(lident_rich) EQUAL fun_expr  { Dfun ($3, $2, $5) }
646
| LET REC with_list1(rec_defn)                      { Drec $3 }
647 648
| EXCEPTION labels(uident)                          { Dexn ($2, PTtuple []) }
| EXCEPTION labels(uident) ty                       { Dexn ($2, $3) }
649

650 651 652 653 654 655
top_ghost:
| (* epsilon *) { Gnone  }
| GHOST         { Gghost }
| LEMMA         { Glemma }

(* Function declarations *)
656 657

type_v:
658
| arrow_type_v  { $1 }
659
| cast          { PTpure $1 }
660 661

arrow_type_v:
662
| param params tail_type_c  { PTfunc ($1 @ $2, $3) }
663 664

tail_type_c:
665 666
| single_spec spec arrow_type_v { $3, spec_union $1 $2 }
| COLON simple_type_c           { $2 }
667 668

simple_type_c:
669 670 671
| ty spec { PTpure $1, $2 }

(* Function definitions *)
672

673
rec_defn:
674
| top_ghost labels(lident_rich) binders cast? spec EQUAL spec seq_expr
675
    { $2, $1, ($3, $4, $8, spec_union $5 $7) }
676

677
fun_defn:
678
| binders cast? spec EQUAL spec seq_expr { ($1, $2, $6, spec_union $3 $5) }
679

680
fun_expr:
681 682
| FUN binders spec ARROW spec seq_expr { ($2, None, $6, spec_union $3 $5) }

683 684 685 686 687 688 689 690
(* Program expressions *)

mk_expr(X): d = X { mk_expr d $startpos $endpos }

seq_expr:
| expr %prec below_SEMI   { $1 }
| expr SEMICOLON          { $1 }
| expr SEMICOLON seq_expr { mk_expr (Esequence ($1, $3)) $startpos $endpos }
691

692
expr: e = mk_expr(expr_) { e }
693 694 695

expr_:
| expr_arg_
696 697
    { match $1 with (* break the infix relation chain *)
      | Einfix (l,o,r) -> Einnfix (l,o,r) | d -> d }
698
| NOT expr %prec prec_prefix_op
699
    { Enot $2 }
700
| prefix_op expr %prec prec_prefix_op
701 702 703 704 705 706 707 708
    { Eidapp (Qident $1, [$2]) }
| l = expr ; o = lazy_op ; r = expr
    { Elazy (l,o,r) }
| l = expr ; o = infix_op ; r = expr
    { Einfix (l,o,r) }
| expr_arg located(expr_arg)+ (* FIXME/TODO: "expr expr_arg" *)
    { let join f (a,_,e) = mk_expr (Eapply (f,a)) $startpos e in
      (List.fold_left join $1 $2).expr_desc }
709
| IF seq_expr THEN expr ELSE expr
710
    { Eif ($2, $4, $6) }
711
| IF seq_expr THEN expr %prec prec_no_else
712 713 714 715 716 717 718
    { Eif ($2, $4, mk_expr (Etuple []) $startpos $endpos) }
| expr LARROW expr
    { match $1.expr_desc with
      | Eidapp (q, [e1]) -> Eassign (e1, q, $3)
      | Eidapp (Qident id, [e1;e2]) when id.id_str = mixfix "[]" ->
          Eidapp (Qident {id with id_str = mixfix "[]<-"}, [e1;e2;$3])
      | _ -> raise Error }
719
| LET top_ghost pattern EQUAL seq_expr IN seq_expr
720
    { match $3.pat_desc with
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
      | Pvar id -> Elet (id, $2, $5, $7)
      | Pwild -> Elet (id_anonymous $3.pat_loc, $2, $5, $7)
      | Ptuple [] -> Elet (id_anonymous $3.pat_loc, $2,
          { $5 with expr_desc = Ecast ($5, PTtuple []) }, $7)
      | Pcast ({pat_desc = Pvar id}, ty) ->
          Elet (id, $2, { $5 with expr_desc = Ecast ($5, ty) }, $7)
      | Pcast ({pat_desc = Pwild}, ty) ->
          let id = id_anonymous $3.pat_loc in
          Elet (id, $2, { $5 with expr_desc = Ecast ($5, ty) }, $7)
      | _ ->
          let e = match $2 with
            | Glemma -> Loc.errorm ~loc:($3.pat_loc)
                "`let lemma' cannot be used with complex patterns"
            | Gghost -> { $5 with expr_desc = Eghost $5 }
            | Gnone -> $5 in
          Ematch (e, [$3, $7]) }
| LET top_ghost labels(lident_op_id) EQUAL seq_expr IN seq_expr
    { Elet ($3, $2, $5, $7) }
| LET top_ghost labels(lident) fun_defn IN seq_expr
    { Efun ($3, $2, $4, $6) }
| LET top_ghost labels(lident_op_id) fun_defn IN seq_expr
    { Efun ($3, $2, $4, $6) }
743
| LET REC with_list1(rec_defn) IN seq_expr
744
    { Erec ($3, $5) }
745
| fun_expr
746 747 748 749 750 751 752
    { Elam $1 }
| VAL top_ghost labels(lident_rich) mk_expr(val_expr) IN seq_expr
    { Elet ($3, $2, $4, $6) }
| MATCH seq_expr WITH match_cases(seq_expr) END
    { Ematch ($2, $4) }
| MATCH comma_list2(expr) WITH match_cases(seq_expr) END
    { Ematch (mk_expr (Etuple $2) $startpos($2) $endpos($2), $4) }
753
| quote_uident COLON seq_expr
754
    { Emark ($1, $3) }
755
| LOOP loop_annotation seq_expr END
756
    { Eloop ($2, $3) }
757
| WHILE seq_expr DO loop_annotation seq_expr DONE
758 759 760
    { Ewhile ($2, $4, $5) }
| FOR lident EQUAL seq_expr for_direction seq_expr DO invariant* seq_expr DONE
    { Efor ($2, $4, $5, $6, $8, $9) }
761
| ABSURD
762
    { Eabsurd }
763
| RAISE uqualid
764
    { Eraise ($2, None) }
765
| RAISE LEFTPAR uqualid seq_expr RIGHTPAR
766 767 768
    { Eraise ($3, Some $4) }
| TRY seq_expr WITH bar_list1(exn_handler) END
    { Etry ($2, $4) }
769
| ANY simple_type_c
770
    { Eany $2 }
771
| GHOST expr
772
    { Eghost $2 }
773
| ABSTRACT spec seq_expr END
774 775 776
    { Eabstract($3, $2) }
| assertion_kind LEFTBRC term RIGHTBRC
    { Eassert ($1, $3) }
777
| label expr %prec prec_named
778 779 780
    { Enamed ($1, $2) }
| expr cast
    { Ecast ($1, $2) }
781

782 783
expr_arg: e = mk_expr(expr_arg_) { e }
expr_dot: e = mk_expr(expr_dot_) { e }
784 785

expr_arg_:
786 787 788 789 790 791 792 793 794 795 796
| qualid                    { Eident $1 }
| numeral                   { Econst $1 }
| TRUE                      { Etrue }
| FALSE                     { Efalse }
| o = oppref ; a = expr_arg { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }

expr_dot_:
| lqualid                   { Eident $1 }
| o = oppref ; a = expr_dot { Eidapp (Qident o, [a]) }
| expr_sub                  { $1 }
797 798

expr_sub:
799
| expr_dot DOT lqualid_rich                         { Eidapp ($3, [$1]) }
800 801 802 803 804 805 806
| BEGIN seq_expr END                                { $2.expr_desc }
| LEFTPAR seq_expr RIGHTPAR                         { $2.expr_desc }
| BEGIN END                                         { Etuple [] }
| LEFTPAR RIGHTPAR                                  { Etuple [] }
| LEFTPAR comma_list2(expr) RIGHTPAR                { Etuple $2 }
| LEFTBRC field_list1(expr) RIGHTBRC                { Erecord $2 }
| LEFTBRC expr_arg WITH field_list1(expr) RIGHTBRC  { Eupdate ($2, $4) }
807
| expr_arg LEFTSQ expr RIGHTSQ
808
    { Eidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
809
| expr_arg LEFTSQ expr LARROW expr RIGHTSQ
810
    { Eidapp (set_op $startpos($2) $endpos($2), [$1;$3;$5]) }
811 812 813 814 815 816
| expr_arg LEFTSQ expr DOTDOT expr RIGHTSQ
    { Eidapp (sub_op $startpos($2) $endpos($2), [$1;$3;$5]) }
| expr_arg LEFTSQ expr DOTDOT RIGHTSQ
    { Eidapp (above_op $startpos($2) $endpos($2), [$1;$3]) }
| expr_arg LEFTSQ DOTDOT expr RIGHTSQ
    { Eidapp (below_op $startpos($2) $endpos($2), [$1;$4]) }
817

818 819 820 821 822 823 824
loop_annotation:
| (* epsilon *)
    { { loop_invariant = []; loop_variant = [] } }
| invariant loop_annotation
    { let a = $2 in { a with loop_invariant = $1 :: a.loop_invariant } }
| variant loop_annotation
    { let a = $2 in { a with loop_variant = variant_union $1 a.loop_variant } }
825

826 827
exn_handler:
| uqualid pat_arg? ARROW seq_expr { $1, $2, $4 }
828

829 830
val_expr:
| tail_type_c { Eany $1 }
831

832 833 834
%inline lazy_op:
| AMPAMP  { LazyAnd }
| BARBAR  { LazyOr }
835 836

assertion_kind:
837 838 839
| ASSERT  { Aassert }
| ASSUME  { Aassume }
| CHECK   { Acheck }
840 841

for_direction:
842 843
| TO      { To }
| DOWNTO  { Downto }
844

845
(* Specification *)
846

847
spec:
848
| (* epsilon *)     { empty_spec }
849
| single_spec spec  { spec_union $1 $2 }
850

851
single_spec:
852
| REQUIRES LEFTBRC term RIGHTBRC
853 854
    { { empty_spec with sp_pre = [$3] } }
| ENSURES LEFTBRC ensures RIGHTBRC
855
    { { empty_spec with sp_post = [floc $startpos($3) $endpos($3), $3] } }
856
| RETURNS LEFTBRC match_cases(term) RIGHTBRC
857 858 859 860
    { { empty_spec with sp_post = [floc $startpos($3) $endpos($3), $3] } }
| RAISES LEFTBRC bar_list1(raises) RIGHTBRC
    { { empty_spec with sp_xpost = [floc $startpos($3) $endpos($3), $3] } }
| READS  LEFTBRC comma_list0(lqualid) RIGHTBRC
861
    { { empty_spec with sp_reads = $3; sp_checkrw = true } }
862
| WRITES LEFTBRC comma_list0(term) RIGHTBRC
863
    { { empty_spec with sp_writes = $3; sp_checkrw = true } }
864 865
| RAISES LEFTBRC comma_list1(xsymbol) RIGHTBRC
    { { empty_spec with sp_xpost = [floc $startpos($3) $endpos($3), $3] } }
866 867
| DIVERGES
    { { empty_spec with sp_diverge = true } }
868 869
| variant
    { { empty_spec with sp_variant = $1 } }
870

871
ensures:
872
| term
873
    { let id = mk_id "result" $startpos $endpos in
874
      [mk_pat (Pvar id) $startpos $endpos, $1] }
875

876
raises:
877 878 879
| uqualid ARROW term
    { $1, mk_pat (Ptuple []) $startpos($1) $endpos($1), $3 }
| uqualid pat_arg ARROW term
880