parser.mly 33.8 KB
Newer Older
1 2
/**************************************************************************/
/*                                                                        */
MARCHE Claude's avatar
MARCHE Claude committed
3
/*  Copyright (C) 2010-2012                                               */
4 5 6
/*    François Bobot                                                      */
/*    Jean-Christophe Filliâtre                                           */
/*    Claude Marché                                                       */
MARCHE Claude's avatar
MARCHE Claude committed
7
/*    Guillaume Melquiond                                                 */
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
8
/*    Andrei Paskevich                                                    */
9 10 11 12 13 14 15 16 17 18 19
/*                                                                        */
/*  This software is free software; you can redistribute it and/or        */
/*  modify it under the terms of the GNU Library General Public           */
/*  License version 2.1, with the special exception on linking            */
/*  described in file LICENSE.                                            */
/*                                                                        */
/*  This software is distributed in the hope that it will be useful,      */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of        */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  */
/*                                                                        */
/**************************************************************************/
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
20 21

%{
22
module Incremental = struct
23 24 25 26 27 28 29
  let stack = Stack.create ()
  let open_file inc = Stack.push inc stack
  let close_file () = ignore (Stack.pop stack)
  let open_theory id = (Stack.top stack).Ptree.open_theory id
  let close_theory () = (Stack.top stack).Ptree.close_theory ()
  let open_module id = (Stack.top stack).Ptree.open_module id
  let close_module () = (Stack.top stack).Ptree.close_module ()
30 31
  let open_namespace n = (Stack.top stack).Ptree.open_namespace n
  let close_namespace l b = (Stack.top stack).Ptree.close_namespace l b
32 33 34 35
  let new_decl loc d = (Stack.top stack).Ptree.new_decl loc d
  let new_pdecl loc d = (Stack.top stack).Ptree.new_pdecl loc d
  let use_clone loc use = (Stack.top stack).Ptree.use_clone loc use
  let use_module loc use = (Stack.top stack).Ptree.use_module loc use
36
end
37

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
38 39 40
  open Ptree

  let loc () = (symbol_start_pos (), symbol_end_pos ())
41 42
  let floc () = Loc.extract (loc ())

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
43
  let loc_i i = (rhs_start_pos i, rhs_end_pos i)
44
  let floc_i i = Loc.extract (loc_i i)
45
(* dead code
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
46
  let loc_ij i j = (rhs_start_pos i, rhs_end_pos j)
47
  let floc_ij i j = Loc.extract (loc_ij i j)
48
*)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
49 50

  let mk_ppl loc d = { pp_loc = loc; pp_desc = d }
51
  let mk_pp d = mk_ppl (floc ()) d
52
(* dead code
53
  let mk_pp_i i d = mk_ppl (floc_i i) d
54
*)
55
  let mk_pat p = { pat_loc = floc (); pat_desc = p }
Andrei Paskevich's avatar
Andrei Paskevich committed
56

57
  let infix_ppl loc a i b = mk_ppl loc (PPbinop (a, i, b))
58
  let infix_pp a i b = infix_ppl (floc ()) a i b
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
59

60
  let prefix_ppl loc p a = mk_ppl loc (PPunop (p, a))
61
  let prefix_pp p a = prefix_ppl (floc ()) p a
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
62

63
  let infix  s = "infix "  ^ s
64
  let prefix s = "prefix " ^ s
65
  let mixfix s = "mixfix " ^ s
66

67 68
  let quote id = { id with id = "'" ^ id.id }

69 70 71 72
  let mk_id id loc = { id = id; id_lab = []; id_loc = loc }

  let add_lab id l = { id with id_lab = l }

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  let mk_l_prefix op e1 =
    let id = mk_id (prefix op) (floc_i 1) in
    mk_pp (PPapp (Qident id, [e1]))

  let mk_l_infix e1 op e2 =
    let id = mk_id (infix op) (floc_i 2) in
    mk_pp (PPinfix (e1, id, e2))

  let mk_l_mixfix2 op e1 e2 =
    let id = mk_id (mixfix op) (floc_i 2) in
    mk_pp (PPapp (Qident id, [e1;e2]))

  let mk_l_mixfix3 op e1 e2 e3 =
    let id = mk_id (mixfix op) (floc_i 2) in
    mk_pp (PPapp (Qident id, [e1;e2;e3]))

89 90 91
  let () = Exn_printer.register
    (fun fmt exn -> match exn with
      | Parsing.Parse_error -> Format.fprintf fmt "syntax error"
92
      | _ -> raise exn)
93

94 95
  let mk_expr d = { expr_loc = floc (); expr_desc = d }
  let mk_expr_i i d = { expr_loc = floc_i i; expr_desc = d }
96

97
  let cast_body c ((e,sp) as t) = match c with
98
    | None -> t
99 100 101 102 103 104 105
    | Some pt -> { e with expr_desc = Ecast (e, pt) }, sp

  let add_variant vl ((e,sp) as t) = match vl with
    | [] -> t
    | _ when sp.sp_variant <> [] ->
        Loc.errorm "variant is specified twice"
    | vl -> e, { sp with sp_variant = vl }
106 107 108

  let rec mk_apply f = function
    | [] ->
109
        assert false
110
    | [a] ->
111
        Eapply (f, a)
112
    | a :: l ->
113 114
        let loc = Loc.join f.expr_loc a.expr_loc in
        mk_apply { expr_loc = loc; expr_desc = Eapply (f, a) } l
115 116

  let mk_apply_id id =
117
    mk_apply { expr_desc = Eident (Qident id); expr_loc = id.id_loc }
118

119 120
  let mk_mixfix2 op e1 e2 =
    let id = mk_id (mixfix op) (floc_i 2) in
121 122
    mk_expr (mk_apply_id id [e1; e2])

123 124
  let mk_mixfix3 op e1 e2 e3 =
    let id = mk_id (mixfix op) (floc_i 2) in
125 126
    mk_expr (mk_apply_id id [e1; e2; e3])

127
  let mk_infix e1 op e2 =
128
    let id = mk_id (infix op) (floc_i 2) in
129 130 131
    mk_expr (mk_apply_id id [e1; e2])

  let mk_prefix op e1 =
132
    let id = mk_id (prefix op) (floc_i 1) in
133 134
    mk_expr (mk_apply_id id [e1])

135 136
  let exit_exn () = Qident (mk_id "%Exit" (floc ()))
  let id_anonymous () = mk_id "_" (floc ())
Jean-Christophe Filliatre's avatar
Jean-Christophe Filliatre committed
137
  let ty_unit () = PPTtuple []
138

139
(* dead code
140
  let id_lt_nat () = Qident (mk_id "lt_nat" (floc ()))
141
*)
142 143 144

  let empty_effect = { pe_reads = []; pe_writes = []; pe_raises = [] }

145 146 147 148 149
  let effect_union e1 e2 =
    let { pe_reads = r1; pe_writes = w1; pe_raises = x1 } = e1 in
    let { pe_reads = r2; pe_writes = w2; pe_raises = x2 } = e2 in
    { pe_reads = r1 @ r2; pe_writes = w1 @ w2; pe_raises = x1 @ x2 }

150
  let spec p (q,xq) ef vl = {
151 152 153
    sp_pre     = p;
    sp_post    = q;
    sp_xpost   = xq;
154 155 156
    sp_effect  = ef;
    sp_variant = vl;
  }
157

158
(* dead code
159
  let add_init_mark e =
160
    let init = { id = "Init"; id_lab = []; id_loc = e.expr_loc } in
161
    { e with expr_desc = Emark (init, e) }
162
*)
163

164 165 166 167 168 169 170 171 172
  let small_integer i =
    try
      match i with
      | Term.IConstDecimal s -> int_of_string s
      | Term.IConstHexa    s -> int_of_string ("0x"^s)
      | Term.IConstOctal   s -> int_of_string ("0o"^s)
      | Term.IConstBinary  s -> int_of_string ("0b"^s)
    with Failure _ -> raise Parsing.Parse_error

173 174 175
  let qualid_last = function
    | Qident x | Qdot (_, x) -> x.id

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
176 177
%}

178
/* Tokens */
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
179

180
%token <string> LIDENT UIDENT
181
%token <Ptree.integer_constant> INTEGER
182
%token <string> OP1 OP2 OP3 OP4 OPPREF
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
183 184
%token <Ptree.real_constant> FLOAT
%token <string> STRING
185
%token <Loc.position> POSITION
186 187 188

/* keywords */

189
%token AS AXIOM CLONE COINDUCTIVE CONSTANT
Andrei Paskevich's avatar
Andrei Paskevich committed
190 191 192
%token ELSE END EPSILON EXISTS EXPORT FALSE FORALL FUNCTION
%token GOAL IF IMPORT IN INDUCTIVE LEMMA
%token LET MATCH META NAMESPACE NOT PROP PREDICATE
193
%token THEN THEORY TRUE TYPE USE WITH
194

195 196
/* program keywords */

197 198
%token ABSTRACT ABSURD ANY ASSERT ASSUME BEGIN CHECK DO DONE DOWNTO
%token EXCEPTION FOR
199
%token FUN GHOST INVARIANT LOOP MODEL MODULE MUTABLE PRIVATE RAISE
200
%token RAISES READS REC TO TRY VAL VARIANT WHILE WRITES
201

202 203
/* symbols */

Andrei Paskevich's avatar
Andrei Paskevich committed
204
%token AND ARROW
205
%token BAR
206
%token COLON COMMA
207
%token DOT EQUAL FUNC LAMBDA LTGT
208
%token LEFTPAR LEFTPAR_STAR_RIGHTPAR LEFTREC LEFTSQ
209
%token LARROW LRARROW
Andrei Paskevich's avatar
Andrei Paskevich committed
210
%token OR PRED QUOTE
211
%token RIGHTPAR RIGHTREC RIGHTSQ
Andrei Paskevich's avatar
Andrei Paskevich committed
212
%token UNDERSCORE
213 214 215

%token EOF

216 217
/* program symbols */

218
%token AMPAMP BARBAR LEFTBRC RIGHTBRC SEMICOLON
219

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
220 221
/* Precedences */

222
%nonassoc prec_mark
223 224 225 226 227 228 229 230 231
%nonassoc prec_post
%nonassoc BAR

%nonassoc prec_triple
%nonassoc prec_simple

%nonassoc IN
%right SEMICOLON
%nonassoc prec_no_else
232
%nonassoc DOT ELSE GHOST
233
%nonassoc prec_named
234
%nonassoc COLON
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
235

Andrei Paskevich's avatar
Andrei Paskevich committed
236
%right ARROW LRARROW
237 238
%right OR BARBAR
%right AND AMPAMP
Andrei Paskevich's avatar
Andrei Paskevich committed
239
%nonassoc NOT
240
%left EQUAL LTGT OP1
241 242
%nonassoc LARROW
%nonassoc RIGHTSQ    /* stronger than <- for e1[e2 <- e3] */
243
%left OP2
244
%left OP3
245
%left OP4
246
%nonassoc prec_prefix_op
247
%left prec_app
248 249
%nonassoc LEFTSQ
%nonassoc OPPREF
250

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
251 252
/* Entry points */

253 254 255
%type <Ptree.incremental -> unit> open_file
%start open_file
%type <unit> logic_file
256
%start logic_file
257
%type <unit> program_file
258
%start program_file
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
259 260
%%

261 262
open_file:
| /* epsilon */  { Incremental.open_file }
263 264
;

265
logic_file:
266
| list0_theory EOF  { Incremental.close_file () }
267 268 269
;

/* File, theory, namespace */
270

271 272 273
list0_theory:
| /* epsilon */         { () }
| theory list0_theory   { () }
274 275
;

276
theory_head:
277
| THEORY uident labels  { Incremental.open_theory (add_lab $2 $3) }
278 279
;

280
theory:
281
| theory_head list0_decl END  { Incremental.close_theory () }
282 283
;

284
list0_decl:
285 286 287 288 289 290
| /* epsilon */        { () }
| new_decl list0_decl  { () }
;

new_decl:
| decl
291
   { Incremental.new_decl (floc ()) $1 }
292
| use_clone
293
   { Incremental.use_clone (floc ()) $1 }
294 295
| namespace_head list0_decl END
   { Incremental.close_namespace (floc_i 1) $1 }
296 297
;

298
namespace_head:
299 300
| NAMESPACE namespace_import uident
   { Incremental.open_namespace $3.id; $2 }
301 302 303 304 305 306 307 308 309
;

namespace_import:
| /* epsilon */  { false }
| IMPORT         { true }
;

/* Declaration */

310
decl:
311 312
| TYPE list1_type_decl
    { TypeDecl $2 }
313 314
| CONSTANT logic_decl_constant
    { LogicDecl [$2] }
Andrei Paskevich's avatar
Andrei Paskevich committed
315 316 317
| FUNCTION list1_logic_decl_function
    { LogicDecl $2 }
| PREDICATE list1_logic_decl_predicate
318
    { LogicDecl $2 }
319 320
| inductive list1_inductive_decl
    { IndDecl ($1, $2) }
321
| AXIOM ident labels COLON lexpr
322
    { PropDecl (Kaxiom, add_lab $2 $3, $5) }
323
| LEMMA ident labels COLON lexpr
324
    { PropDecl (Klemma, add_lab $2 $3, $5) }
325
| GOAL ident labels COLON lexpr
326
    { PropDecl (Kgoal, add_lab $2 $3, $5) }
327
| META sident list1_meta_arg_sep_comma
328
    { Meta ($2, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
329 330
;

331 332 333 334 335
inductive:
| INDUCTIVE   { Decl.Ind }
| COINDUCTIVE { Decl.Coind }
;

336 337
/* Use and clone */

338 339
use_clone:
| USE use
340
    { ($2, None) }
341
| CLONE use clone_subst
342
    { ($2, Some $3) }
343 344
;

345 346
use:
| imp_exp tqualid
347
    { { use_theory = $2; use_as = qualid_last $2; use_imp_exp = $1 } }
348
| imp_exp tqualid AS uident
349
    { { use_theory = $2; use_as = $4.id; use_imp_exp = $1 } }
350 351
;

352
imp_exp:
353 354 355
| IMPORT        { Some true }
| EXPORT        { None }
| /* epsilon */ { Some false }
356 357 358 359 360 361 362 363 364 365 366 367 368
;

clone_subst:
| /* epsilon */          { [] }
| WITH list1_comma_subst { $2 }
;

list1_comma_subst:
| subst                         { [$1] }
| subst COMMA list1_comma_subst { $1 :: $3 }
;

subst:
369 370 371 372 373 374 375
| NAMESPACE ns     EQUAL ns     { CSns   (floc (), $2, $4) }
| TYPE      qualid EQUAL qualid { CStsym (floc (), $2, $4) }
| CONSTANT  qualid EQUAL qualid { CSfsym (floc (), $2, $4) }
| FUNCTION  qualid EQUAL qualid { CSfsym (floc (), $2, $4) }
| PREDICATE qualid EQUAL qualid { CSpsym (floc (), $2, $4) }
| LEMMA     qualid              { CSlemma (floc (), $2) }
| GOAL      qualid              { CSgoal  (floc (), $2) }
376 377
;

378 379 380 381 382
ns:
| uqualid { Some $1 }
| DOT     { None }
;

383 384 385 386 387 388 389 390
/* Meta args */

list1_meta_arg_sep_comma:
| meta_arg                                { [$1] }
| meta_arg COMMA list1_meta_arg_sep_comma { $1 :: $3 }
;

meta_arg:
Andrei Paskevich's avatar
Andrei Paskevich committed
391
| TYPE      qualid { PMAts  $2 }
392 393
| FUNCTION  qualid { PMAfs  $2 }
| PREDICATE qualid { PMAps  $2 }
Andrei Paskevich's avatar
Andrei Paskevich committed
394 395
| PROP      qualid { PMApr  $2 }
| STRING           { PMAstr $1 }
396
| INTEGER          { PMAint (small_integer $1) }
397 398
;

399 400 401
/* Type declarations */

list1_type_decl:
402 403
| type_decl                       { [$1] }
| type_decl WITH list1_type_decl  { $1 :: $3 }
404 405 406
;

type_decl:
407
| lident labels type_args typedefn
408
  { let model, vis, def, inv = $4 in
409
    let vis = if model then Abstract else vis in
410
    { td_loc = floc (); td_ident = add_lab $1 $2;
411 412
      td_params = $3; td_model = model;
      td_vis = vis; td_def = def; td_inv = inv } }
413 414
;

415
type_args:
416 417
| /* epsilon */             { [] }
| type_var labels type_args { add_lab $1 $2 :: $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
418 419 420
;

typedefn:
421
| /* epsilon */
422
    { false, Public, TDabstract, [] }
423 424 425 426 427 428
| equal_model visibility typecases invariant
    { $1, $2, TDalgebraic $3, $4 }
| equal_model visibility BAR typecases invariant
    { $1, $2, TDalgebraic $4, $5 }
| equal_model visibility record_type invariant
    { $1, $2, TDrecord $3, $4 }
429 430 431
/* abstract/private is not allowed for alias type */
| equal_model visibility primitive_type
    { if $2 <> Public then Loc.error ~loc:(floc_i 2) Parsing.Parse_error;
432
      $1, Public, TDalias $3, [] }
433 434 435 436 437 438
;

visibility:
| /* epsilon */ { Public }
| PRIVATE       { Private }
| ABSTRACT      { Abstract }
439 440 441 442 443
;

equal_model:
| EQUAL { false }
| MODEL { true }
444 445 446
;

record_type:
Andrei Paskevich's avatar
Andrei Paskevich committed
447
| LEFTREC list1_record_field opt_semicolon RIGHTREC { List.rev $2 }
448 449 450 451
;

list1_record_field:
| record_field                              { [$1] }
452
| list1_record_field SEMICOLON record_field { $3 :: $1 }
453 454
;

455 456 457 458 459 460 461 462
field_modifiers:
| /* epsilon */ { false, false }
| MUTABLE       { true,  false }
| GHOST         { false, true  }
| GHOST MUTABLE { true,  true  }
| MUTABLE GHOST { true,  true  }
;

463
record_field:
464 465 466 467 468 469
| field_modifiers lident labels COLON primitive_type
   { { f_loc = floc ();
       f_ident = add_lab $2 $3;
       f_mutable = fst $1;
       f_ghost = snd $1;
       f_pty = $5 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
470 471 472 473 474 475 476 477
;

typecases:
| typecase                { [$1] }
| typecase BAR typecases  { $1::$3 }
;

typecase:
478
| uident labels params   { (floc (), add_lab $1 $2, $3) }
479 480 481 482
;

/* Logic declarations */

Andrei Paskevich's avatar
Andrei Paskevich committed
483 484 485 486 487 488 489 490 491 492
list1_logic_decl_function:
| logic_decl_function                        { [$1] }
| logic_decl_function WITH list1_logic_decl  { $1 :: $3 }
;

list1_logic_decl_predicate:
| logic_decl_predicate                        { [$1] }
| logic_decl_predicate WITH list1_logic_decl  { $1 :: $3 }
;

493
list1_logic_decl:
494 495
| logic_decl                        { [$1] }
| logic_decl WITH list1_logic_decl  { $1 :: $3 }
496 497
;

498 499 500 501 502 503
logic_decl_constant:
| lident_rich labels COLON primitive_type logic_def_option
  { { ld_loc = floc (); ld_ident = add_lab $1 $2;
      ld_params = []; ld_type = Some $4; ld_def = $5 } }
;

Andrei Paskevich's avatar
Andrei Paskevich committed
504 505 506 507 508 509 510 511 512 513 514 515
logic_decl_function:
| lident_rich labels params COLON primitive_type logic_def_option
  { { ld_loc = floc (); ld_ident = add_lab $1 $2;
      ld_params = $3; ld_type = Some $5; ld_def = $6 } }
;

logic_decl_predicate:
| lident_rich labels params logic_def_option
  { { ld_loc = floc (); ld_ident = add_lab $1 $2;
      ld_params = $3; ld_type = None; ld_def = $4 } }
;

516
logic_decl:
517
| lident_rich labels params logic_type_option logic_def_option
518
  { { ld_loc = floc (); ld_ident = add_lab $1 $2;
519
      ld_params = $3; ld_type = $4; ld_def = $5 } }
520 521 522 523 524 525 526 527 528 529
;

logic_type_option:
| /* epsilon */        { None }
| COLON primitive_type { Some $2 }
;

logic_def_option:
| /* epsilon */ { None }
| EQUAL lexpr   { Some $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
530 531
;

532 533 534
/* Inductive declarations */

list1_inductive_decl:
535 536
| inductive_decl                            { [$1] }
| inductive_decl WITH list1_inductive_decl  { $1 :: $3 }
537 538 539
;

inductive_decl:
540
| lident_rich labels params inddefn
541
  { { in_loc = floc (); in_ident = add_lab $1 $2;
542
      in_params = $3; in_def = $4 } }
Andrei Paskevich's avatar
Andrei Paskevich committed
543
;
544

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
545 546 547 548 549 550 551 552 553 554 555
inddefn:
| /* epsilon */       { [] }
| EQUAL bar_ indcases { $3 }
;

indcases:
| indcase               { [$1] }
| indcase BAR indcases  { $1::$3 }
;

indcase:
556
| ident labels COLON lexpr { (floc (), add_lab $1 $2, $4) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
557 558
;

559 560 561 562 563 564 565 566
/* Type expressions */

primitive_type:
| primitive_type_arg           { $1 }
| lqualid primitive_type_args  { PPTtyapp ($2, $1) }
;

primitive_type_non_lident:
567 568
| primitive_type_arg_non_lident           { $1 }
| uqualid DOT lident primitive_type_args  { PPTtyapp ($4, Qdot ($1, $3)) }
569 570 571 572 573 574 575 576
;

primitive_type_args:
| primitive_type_arg                      { [$1] }
| primitive_type_arg primitive_type_args  { $1 :: $2 }
;

primitive_type_arg:
577
| lident                         { PPTtyapp ([], Qident $1) }
578 579 580 581
| primitive_type_arg_non_lident  { $1 }
;

primitive_type_arg_non_lident:
582 583
| uqualid DOT lident
   { PPTtyapp ([], Qdot ($1, $3)) }
584 585 586 587
| type_var
   { PPTtyvar $1 }
| LEFTPAR primitive_type COMMA list1_primitive_type_sep_comma RIGHTPAR
   { PPTtuple ($2 :: $4) }
588 589 590 591 592 593
| LEFTPAR RIGHTPAR
   { PPTtuple [] }
| LEFTPAR primitive_type RIGHTPAR
   { $2 }
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
594 595 596 597 598
list1_primitive_type_sep_comma:
| primitive_type                                      { [$1] }
| primitive_type COMMA list1_primitive_type_sep_comma { $1 :: $3 }
;

599
type_var:
600
| QUOTE lident { $2 }
601 602
;

603 604
/* Logic expressions */

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
605
lexpr:
606
| lexpr ARROW lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
607
   { infix_pp $1 PPimplies $3 }
608
| lexpr LRARROW lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
609
   { infix_pp $1 PPiff $3 }
610
| lexpr OR lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
611
   { infix_pp $1 PPor $3 }
612
| lexpr BARBAR lexpr
613
   { infix_pp (mk_pp (PPnamed (Lstr Term.asym_label, $1))) PPor $3 }
614
| lexpr AND lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
615
   { infix_pp $1 PPand $3 }
616
| lexpr AMPAMP lexpr
617
   { infix_pp (mk_pp (PPnamed (Lstr Term.asym_label, $1))) PPand $3 }
618
| NOT lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
619
   { prefix_pp PPnot $2 }
620
| lexpr EQUAL lexpr
621
   { mk_l_infix $1 "=" $3 }
622
| lexpr LTGT lexpr
623
   { prefix_pp PPnot (mk_l_infix $1 "=" $3) }
624
| lexpr OP1 lexpr
625
   { mk_l_infix $1 $2 $3 }
626
| lexpr OP2 lexpr
627
   { mk_l_infix $1 $2 $3 }
628
| lexpr OP3 lexpr
629
   { mk_l_infix $1 $2 $3 }
630
| lexpr OP4 lexpr
631
   { mk_l_infix $1 $2 $3 }
632
| prefix_op lexpr %prec prec_prefix_op
633
   { mk_l_prefix $1 $2 }
634 635
| qualid list1_lexpr_arg
   { mk_pp (PPapp ($1, $2)) }
636
| IF lexpr THEN lexpr ELSE lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
637
   { mk_pp (PPif ($2, $4, $6)) }
Andrei Paskevich's avatar
Andrei Paskevich committed
638 639
| quant list1_param_var_sep_comma triggers DOT lexpr
   { mk_pp (PPquant ($1, $2, $3, $5)) }
640 641
| label lexpr %prec prec_named
   { mk_pp (PPnamed ($1, $2)) }
642
| LET pattern EQUAL lexpr IN lexpr
643 644
   { match $2.pat_desc with
       | PPpvar id -> mk_pp (PPlet (id, $4, $6))
Andrei Paskevich's avatar
Andrei Paskevich committed
645 646
       | _ -> mk_pp (PPmatch ($4, [$2, $6])) }
| MATCH lexpr WITH bar_ match_cases END
647
   { mk_pp (PPmatch ($2, $5)) }
Andrei Paskevich's avatar
Andrei Paskevich committed
648 649
| MATCH lexpr COMMA list1_lexpr_sep_comma WITH bar_ match_cases END
   { mk_pp (PPmatch (mk_pp (PPtuple ($2::$4)), $7)) }
650 651
| EPSILON lident labels COLON primitive_type DOT lexpr
   { mk_pp (PPeps (add_lab $2 $3, $5, $7)) }
652
| lexpr COLON primitive_type
653
   { mk_pp (PPcast ($1, $3)) }
654
| lexpr_arg
655 656 657
   { $1 }
;

658 659 660 661 662 663 664 665 666
list1_field_value:
| field_value                             { [$1] }
| list1_field_value SEMICOLON field_value { $3 :: $1 }
;

field_value:
| lqualid EQUAL lexpr { $1, $3 }
;

667 668 669
list1_lexpr_arg:
| lexpr_arg                 { [$1] }
| lexpr_arg list1_lexpr_arg { $1::$2 }
Andrei Paskevich's avatar
Andrei Paskevich committed
670
;
671

672
constant:
673 674
| INTEGER   { Term.ConstInt $1 }
| FLOAT     { Term.ConstReal $1 }
675 676
;

677
lexpr_arg:
678 679 680 681 682 683
| qualid            { mk_pp (PPvar $1) }
| constant          { mk_pp (PPconst $1) }
| TRUE              { mk_pp PPtrue }
| FALSE             { mk_pp PPfalse }
| OPPREF lexpr_arg  { mk_l_prefix $1 $2 }
| lexpr_sub         { $1 }
684
| QUOTE uident      { mk_pp (PPvar (Qident (quote $2))) }
685 686 687
;

lexpr_dot:
688 689 690
| lqualid_copy      { mk_pp (PPvar $1) }
| OPPREF lexpr_dot  { mk_l_prefix $1 $2 }
| lexpr_sub         { $1 }
691 692 693
;

lexpr_sub:
694
| lexpr_dot DOT lqualid_rich
695
   { mk_pp (PPapp ($3, [$1])) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
696 697
| LEFTPAR lexpr RIGHTPAR
   { $2 }
698 699 700 701
| LEFTPAR RIGHTPAR
   { mk_pp (PPtuple []) }
| LEFTPAR lexpr COMMA list1_lexpr_sep_comma RIGHTPAR
   { mk_pp (PPtuple ($2 :: $4)) }
702 703
| LEFTREC list1_field_value opt_semicolon RIGHTREC
   { mk_pp (PPrecord (List.rev $2)) }
Andrei Paskevich's avatar
Andrei Paskevich committed
704 705
| LEFTREC lexpr_arg WITH list1_field_value opt_semicolon RIGHTREC
   { mk_pp (PPupdate ($2, List.rev $4)) }
706
| lexpr_arg LEFTSQ lexpr RIGHTSQ
707
   { mk_l_mixfix2 "[]" $1 $3 }
708
| lexpr_arg LEFTSQ lexpr LARROW lexpr RIGHTSQ
709
   { mk_l_mixfix3 "[<-]" $1 $3 $5 }
Andrei Paskevich's avatar
Andrei Paskevich committed
710
;
711

Andrei Paskevich's avatar
Andrei Paskevich committed
712 713 714 715
quant:
| FORALL  { PPforall }
| EXISTS  { PPexists }
| LAMBDA  { PPlambda }
716 717
| FUNC    { PPfunc }
| PRED    { PPpred }
Andrei Paskevich's avatar
Andrei Paskevich committed
718 719
;

720
/* Triggers */
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
721

722 723 724 725
triggers:
| /* epsilon */                         { [] }
| LEFTSQ list1_trigger_sep_bar RIGHTSQ  { $2 }
;
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
list1_trigger_sep_bar:
| trigger                           { [$1] }
| trigger BAR list1_trigger_sep_bar { $1 :: $3 }
;

trigger:
| list1_lexpr_sep_comma { $1 }
;

list1_lexpr_sep_comma:
| lexpr                             { [$1] }
| lexpr COMMA list1_lexpr_sep_comma { $1 :: $3 }
;

/* Match expressions */
742

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
743 744 745 746 747 748
match_cases:
| match_case                  { [$1] }
| match_case BAR match_cases  { $1::$3 }
;

match_case:
Andrei Paskevich's avatar
Andrei Paskevich committed
749
| pattern ARROW lexpr   { ($1,$3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
750 751 752
;

pattern:
Andrei Paskevich's avatar
Andrei Paskevich committed
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
| pat_conj              { $1 }
| pat_conj BAR pattern  { mk_pat (PPpor ($1, $3)) }
;

pat_conj:
| pat_uni                      { $1 }
| pat_uni COMMA list1_pat_uni  { mk_pat (PPptuple ($1::$3)) }
;

list1_pat_uni:
| pat_uni                      { [$1] }
| pat_uni COMMA list1_pat_uni  { $1::$3 }
;

pat_uni:
768 769 770
| pat_arg                   { $1 }
| uqualid list1_pat_arg     { mk_pat (PPpapp ($1, $2)) }
| pat_uni AS lident labels  { mk_pat (PPpas ($1, add_lab $3 $4)) }
Andrei Paskevich's avatar
Andrei Paskevich committed
771
;
772

773
list1_pat_arg:
Andrei Paskevich's avatar
Andrei Paskevich committed
774 775 776
| pat_arg                { [$1] }
| pat_arg list1_pat_arg  { $1::$2 }
;
777

778
pat_arg:
Andrei Paskevich's avatar
Andrei Paskevich committed
779
| UNDERSCORE                { mk_pat (PPpwild) }
780
| lident labels             { mk_pat (PPpvar (add_lab $1 $2)) }
Andrei Paskevich's avatar
Andrei Paskevich committed
781 782 783
| uqualid                   { mk_pat (PPpapp ($1, [])) }
| LEFTPAR RIGHTPAR          { mk_pat (PPptuple []) }
| LEFTPAR pattern RIGHTPAR  { $2 }
Andrei Paskevich's avatar
Andrei Paskevich committed
784 785 786 787 788 789 790 791 792 793
| LEFTREC pfields RIGHTREC  { mk_pat (PPprec $2) }
;

pfields:
| pat_field opt_semicolon       { [$1] }
| pat_field SEMICOLON pfields   { $1::$3 }
;

pat_field:
| lqualid EQUAL pattern   { ($1, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
794 795
;

796
/* Parameters */
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
797

798 799 800
params:
| /* epsilon */   { [] }
| param params    { $1 @ $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
801 802
;

803 804 805 806 807 808 809 810 811 812 813 814 815
param:
| LEFTPAR param_var RIGHTPAR
   { $2 }
| LEFTPAR param_type RIGHTPAR
   { [None, $2] }
| LEFTPAR param_type COMMA list1_primitive_type_sep_comma RIGHTPAR
   { [None, PPTtuple ($2::$4)] }
| LEFTPAR RIGHTPAR
   { [None, PPTtuple []] }
| type_var
   { [None, PPTtyvar $1] }
| lqualid
   { [None, PPTtyapp ([], $1)] }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
816 817
;

818 819 820 821 822 823 824 825
param_type:
| lident param_type_cont
   { PPTtyapp ($2, Qident $1) }
| lident list1_lident param_type_cont
   { let id2ty i = PPTtyapp ([], Qident i) in
     PPTtyapp (List.map id2ty $2 @ $3, Qident $1) }
| primitive_type_non_lident
   { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
826 827
;

828 829 830 831
param_type_cont:
| /* epsilon */                                      { [] }
| primitive_type_arg_non_lident                      { [$1] }
| primitive_type_arg_non_lident primitive_type_args  { $1 :: $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
832 833
;

834 835 836
list1_param_var_sep_comma:
| param_var                                  { $1 }
| param_var COMMA list1_param_var_sep_comma  { $1 @ $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
837 838
;

839 840 841
param_var:
| list1_lident COLON primitive_type
   { List.map (fun id -> (Some id, $3)) $1 }
842 843 844 845 846 847
| list1_lident label labels list0_lident_labels COLON primitive_type
   { let l = match List.rev $1 with
       | i :: l -> add_lab i ($2 :: $3) :: l
       | [] -> assert false
     in
     List.map (fun id -> (Some id, $6)) (List.rev_append l $4) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
848 849
;

850
list1_lident:
851 852
| lident               { [$1] }
| lident list1_lident  { $1 :: $2 }
853 854
;

855 856 857 858 859
list0_lident_labels:
| /* epsilon */                      { [] }
| lident labels list0_lident_labels  { add_lab $1 $2 :: $3 }
;

860 861 862 863 864
/* Idents */

ident:
| uident { $1 }
| lident { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
865 866
;

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
uident:
| UIDENT          { mk_id $1 (floc ()) }
;

lident:
| LIDENT          { mk_id $1 (floc ()) }
| lident_keyword  { mk_id $1 (floc ()) }
;

lident_keyword:
| MODEL           { "model" }
;

/* Idents + symbolic operations' names */

882 883 884
ident_rich:
| uident      { $1 }
| lident_rich { $1 }
885 886
;

887
lident_rich:
888 889 890
| lident                      { $1 }
| LEFTPAR lident_op RIGHTPAR  { mk_id $2 (floc ()) }
| LEFTPAR_STAR_RIGHTPAR       { mk_id (infix "*") (floc ()) }
891 892
;

893
lident_op:
894 895 896 897 898 899
| prefix_op             { infix $1 }
| prefix_op UNDERSCORE  { prefix $1 }
| EQUAL                 { infix "=" }
| OPPREF                { prefix $1 }
| LEFTSQ RIGHTSQ        { mixfix "[]" }
| LEFTSQ LARROW RIGHTSQ { mixfix "[<-]" }
900
| LEFTSQ RIGHTSQ LARROW { mixfix "[]<-" }
901 902
;

903
prefix_op:
904 905 906 907 908 909
| OP1   { $1 }
| OP2   { $1 }
| OP3   { $1 }
| OP4   { $1 }
;

910
/* Qualified idents */
911

912 913 914
qualid:
| ident_rich              { Qident $1 }
| uqualid DOT ident_rich  { Qdot ($1, $3) }
915 916
;

917 918 919
lqualid_rich:
| lident_rich             { Qident $1 }
| uqualid DOT lident_rich { Qdot ($1, $3) }
920 921 922
;

lqualid:
923 924
| lident              { Qident $1 }
| uqualid DOT lident  { Qdot ($1, $3) }
925 926
;

927 928 929 930
/* copy of lqualid to avoid yacc conflicts */
lqualid_copy:
| lident              { Qident $1 }
| uqualid DOT lident  { Qdot ($1, $3) }
931 932
;

933 934 935
uqualid:
| uident              { Qident $1 }
| uqualid DOT uident  { Qdot ($1, $3) }
936 937
;

938 939
/* Theory/Module names */

940 941 942
tqualid:
| uident                { Qident $1 }
| any_qualid DOT uident { Qdot ($1, $3) }
Andrei Paskevich's avatar
Andrei Paskevich committed
943
;
944

945
any_qualid:
946 947 948 949 950 951 952
| sident                { Qident $1 }
| any_qualid DOT sident { Qdot ($1, $3) }
;

sident:
| ident   { $1 }
| STRING  { mk_id $1 (floc ()) }
Andrei Paskevich's avatar
Andrei Paskevich committed
953
;
954 955 956

/* Misc */

957
label:
Andrei Paskevich's avatar
Andrei Paskevich committed
958
| STRING    { Lstr (Ident.create_label $1) }
959
| POSITION  { Lpos $1 }
960 961
;

962 963 964 965 966
labels:
| /* epsilon */ { [] }
| label labels  { $1 :: $2 }
;

967 968 969
bar_:
| /* epsilon */ { () }
| BAR           { () }
970 971
;

972 973 974
/****************************************************************************/

program_file:
975
| list0_theory_or_module EOF { Incremental.close_file () }
976 977
;

978 979 980 981
list0_theory_or_module:
| /* epsilon */                   { () }
| theory list0_theory_or_module   { () }
| module_ list0_theory_or_module  { () }
982 983
;

984 985
module_head:
| MODULE uident labels  { Incremental.open_module (add_lab $2 $3) }
986 987
;

988 989
module_:
| module_head list0_pdecl END  { Incremental.close_module () }
990 991
;

992 993 994 995
list0_pdecl:
| /* epsilon */         { () }
| new_decl  list0_pdecl { () }
| new_pdecl list0_pdecl { () }
996 997
;

998 999 1000 1001 1002
new_pdecl:
| pdecl
    { Incremental.new_pdecl (floc ()) $1 }
| USE use_module
    { Incremental.use_module (floc ()) $2 }
1003 1004
;

1005 1006
use_module:
| imp_exp MODULE tqualid
1007
    { { use_theory = $3; use_as = qualid_last $3; use_imp_exp = $1 } }
1008
| imp_exp MODULE tqualid AS uident
1009
    { { use_theory = $3; use_as = $5.id; use_imp_exp = $1 } }
1010 1011
;

1012
pdecl:
1013
| LET ghost lident_rich labels list1_type_v_binder opt_cast EQUAL triple
1014
    { Dlet (add_lab $3 $4, $2, mk_expr_i 8 (Efun ($5, cast_body $6 $8))) }
1015
| LET ghost lident_rich labels EQUAL FUN list1_type_v_binder ARROW triple
1016
    { Dlet (add_lab $3 $4, $2, mk_expr_i 9 (Efun ($7, $9))) }
1017 1018
| LET REC list1_recfun_sep_and
    { Dletrec $3 }
1019
| VAL ghost lident_rich labels COLON type_v
1020
    { Dparam (add_lab $3 $4, $2, $6) }
1021
| VAL ghost lident_rich labels list1_type_v_param COLON type_c
1022
    { Dparam (add_lab $3 $4, $2, Tarrow ($5,