parser.mly 33.7 KB
Newer Older
1 2
/**************************************************************************/
/*                                                                        */
MARCHE Claude's avatar
MARCHE Claude committed
3
/*  Copyright (C) 2010-2012                                               */
4 5 6
/*    François Bobot                                                      */
/*    Jean-Christophe Filliâtre                                           */
/*    Claude Marché                                                       */
MARCHE Claude's avatar
MARCHE Claude committed
7
/*    Guillaume Melquiond                                                 */
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
8
/*    Andrei Paskevich                                                    */
9 10 11 12 13 14 15 16 17 18 19
/*                                                                        */
/*  This software is free software; you can redistribute it and/or        */
/*  modify it under the terms of the GNU Library General Public           */
/*  License version 2.1, with the special exception on linking            */
/*  described in file LICENSE.                                            */
/*                                                                        */
/*  This software is distributed in the hope that it will be useful,      */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of        */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  */
/*                                                                        */
/**************************************************************************/
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
20 21

%{
22
module Incremental = struct
23 24 25
  let env_ref  = ref []
  let lenv_ref = ref []
  let uc_ref   = ref []
26
  let path_ref = ref []
27 28 29 30 31 32 33 34 35

  let ref_get  ref = List.hd !ref
  let ref_tail ref = List.tl !ref
  let ref_drop ref = ref := ref_tail ref
  let ref_pop  ref = let v = ref_get ref in ref_drop ref; v

  let ref_push ref v = ref := v :: !ref
  let ref_set  ref v = ref := v :: ref_tail ref

36 37 38 39
  let open_logic_file env path =
    ref_push env_ref env;
    ref_push path_ref path;
    ref_push lenv_ref Util.Mstr.empty
40 41

  let close_logic_file () =
42 43 44
    ref_drop path_ref;
    ref_drop env_ref;
    ref_pop lenv_ref
45 46

  let open_theory id =
47 48
    let path = ref_get path_ref in
    ref_push uc_ref (Theory.create_theory ~path (Denv.create_user_id id))
49 50 51 52 53 54 55 56 57 58 59 60

  let close_theory loc =
    let uc = ref_pop uc_ref in
    ref_set lenv_ref (Typing.close_theory loc (ref_get lenv_ref) uc)

  let open_namespace () =
    ref_set uc_ref (Theory.open_namespace (ref_get uc_ref))

  let close_namespace loc import name =
    ref_set uc_ref (Typing.close_namespace loc import name (ref_get uc_ref))

  let new_decl d =
61 62 63
    ref_set uc_ref (Typing.add_decl (ref_get uc_ref) d)

  let new_use_clone d =
64
    let env = ref_get env_ref in let lenv = ref_get lenv_ref in
65
    ref_set uc_ref (Typing.add_use_clone env lenv (ref_get uc_ref) d)
66

67
end
68

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
69 70 71 72
  open Ptree
  open Parsing

  let loc () = (symbol_start_pos (), symbol_end_pos ())
73 74
  let floc () = Loc.extract (loc ())

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
75
  let loc_i i = (rhs_start_pos i, rhs_end_pos i)
76
  let floc_i i = Loc.extract (loc_i i)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
77
  let loc_ij i j = (rhs_start_pos i, rhs_end_pos j)
78
  let floc_ij i j = Loc.extract (loc_ij i j)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
79 80

  let mk_ppl loc d = { pp_loc = loc; pp_desc = d }
81 82
  let mk_pp d = mk_ppl (floc ()) d
  let mk_pp_i i d = mk_ppl (floc_i i) d
83

84
  let mk_pat p = { pat_loc = floc (); pat_desc = p }
Andrei Paskevich's avatar
Andrei Paskevich committed
85

86
  let infix_ppl loc a i b = mk_ppl loc (PPbinop (a, i, b))
87
  let infix_pp a i b = infix_ppl (floc ()) a i b
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
88

89
  let prefix_ppl loc p a = mk_ppl loc (PPunop (p, a))
90
  let prefix_pp p a = prefix_ppl (floc ()) p a
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
91

92
  let infix  s = "infix "  ^ s
93
  let prefix s = "prefix " ^ s
94
  let mixfix s = "mixfix " ^ s
95

96 97
  let quote id = { id with id = "'" ^ id.id }

98 99 100 101
  let mk_id id loc = { id = id; id_lab = []; id_loc = loc }

  let add_lab id l = { id with id_lab = l }

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  let mk_l_prefix op e1 =
    let id = mk_id (prefix op) (floc_i 1) in
    mk_pp (PPapp (Qident id, [e1]))

  let mk_l_infix e1 op e2 =
    let id = mk_id (infix op) (floc_i 2) in
    mk_pp (PPinfix (e1, id, e2))

  let mk_l_mixfix2 op e1 e2 =
    let id = mk_id (mixfix op) (floc_i 2) in
    mk_pp (PPapp (Qident id, [e1;e2]))

  let mk_l_mixfix3 op e1 e2 e3 =
    let id = mk_id (mixfix op) (floc_i 2) in
    mk_pp (PPapp (Qident id, [e1;e2;e3]))

118 119 120 121 122
  let () = Exn_printer.register
    (fun fmt exn -> match exn with
      | Parsing.Parse_error -> Format.fprintf fmt "syntax error"
      | _ -> raise exn
    )
123

124 125
  let mk_expr d = { expr_loc = floc (); expr_desc = d }
  let mk_expr_i i d = { expr_loc = floc_i i; expr_desc = d }
126 127 128 129 130 131 132

  let cast_body c ((p,e,q) as t) = match c with
    | None -> t
    | Some pt -> p, { e with expr_desc = Ecast (e, pt) }, q

  let rec mk_apply f = function
    | [] ->
133
        assert false
134
    | [a] ->
135
        Eapply (f, a)
136
    | a :: l ->
137 138
        let loc = Loc.join f.expr_loc a.expr_loc in
        mk_apply { expr_loc = loc; expr_desc = Eapply (f, a) } l
139 140 141 142 143 144 145

  let mk_apply_id id =
    let e =
      { expr_desc = Eident (Qident id); expr_loc = id.id_loc }
    in
    mk_apply e

146 147
  let mk_mixfix2 op e1 e2 =
    let id = mk_id (mixfix op) (floc_i 2) in
148 149
    mk_expr (mk_apply_id id [e1; e2])

150 151
  let mk_mixfix3 op e1 e2 e3 =
    let id = mk_id (mixfix op) (floc_i 2) in
152 153
    mk_expr (mk_apply_id id [e1; e2; e3])

154
  let mk_infix e1 op e2 =
155
    let id = mk_id (infix op) (floc_i 2) in
156 157 158
    mk_expr (mk_apply_id id [e1; e2])

  let mk_prefix op e1 =
159
    let id = mk_id (prefix op) (floc_i 1) in
160 161
    mk_expr (mk_apply_id id [e1])

162 163
  let exit_exn () = Qident (mk_id "%Exit" (floc ()))
  let id_anonymous () = mk_id "_" (floc ())
Jean-Christophe Filliatre's avatar
Jean-Christophe Filliatre committed
164
  let ty_unit () = PPTtuple []
165

166
  let id_lt_nat () = Qident (mk_id "lt_nat" (floc ()))
167 168 169 170 171 172 173 174

  let empty_effect = { pe_reads = []; pe_writes = []; pe_raises = [] }

  let type_c p ty ef q =
    { pc_result_type = ty;
      pc_effect      = ef;
      pc_pre         = p;
      pc_post        = q; }
175

176
  let add_init_mark e =
177
    let init = { id = "Init"; id_lab = []; id_loc = e.expr_loc } in
178
    { e with expr_desc = Emark (init, e) }
179

180 181 182 183 184 185 186 187 188
  let small_integer i =
    try
      match i with
      | Term.IConstDecimal s -> int_of_string s
      | Term.IConstHexa    s -> int_of_string ("0x"^s)
      | Term.IConstOctal   s -> int_of_string ("0o"^s)
      | Term.IConstBinary  s -> int_of_string ("0b"^s)
    with Failure _ -> raise Parsing.Parse_error

189 190 191
  let qualid_last = function
    | Qident x | Qdot (_, x) -> x.id

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
192 193
%}

194
/* Tokens */
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
195

196
%token <string> LIDENT UIDENT
197
%token <Ptree.integer_constant> INTEGER
198
%token <string> OP1 OP2 OP3 OP4 OPPREF
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
199 200
%token <Ptree.real_constant> FLOAT
%token <string> STRING
201
%token <Loc.position> POSITION
202 203 204

/* keywords */

205
%token AS AXIOM CLONE COINDUCTIVE CONSTANT
Andrei Paskevich's avatar
Andrei Paskevich committed
206 207 208
%token ELSE END EPSILON EXISTS EXPORT FALSE FORALL FUNCTION
%token GOAL IF IMPORT IN INDUCTIVE LEMMA
%token LET MATCH META NAMESPACE NOT PROP PREDICATE
209
%token THEN THEORY TRUE TYPE USE WITH
210

211 212
/* program keywords */

213 214
%token ABSTRACT ABSURD ANY ASSERT ASSUME BEGIN CHECK DO DONE DOWNTO
%token EXCEPTION FOR
215
%token FUN GHOST INVARIANT LOOP MODEL MODULE MUTABLE PRIVATE RAISE
216
%token RAISES READS REC TO TRY VAL VARIANT WHILE WRITES
217

218 219
/* symbols */

Andrei Paskevich's avatar
Andrei Paskevich committed
220
%token AND ARROW
221
%token BAR
222
%token COLON COMMA
223
%token DOT EQUAL FUNC LAMBDA LTGT
224
%token LEFTPAR LEFTPAR_STAR_RIGHTPAR LEFTREC LEFTSQ
225
%token LARROW LRARROW
Andrei Paskevich's avatar
Andrei Paskevich committed
226
%token OR PRED QUOTE
227
%token RIGHTPAR RIGHTREC RIGHTSQ
Andrei Paskevich's avatar
Andrei Paskevich committed
228
%token UNDERSCORE
229 230 231

%token EOF

232 233
/* program symbols */

234
%token AMPAMP BARBAR LEFTBRC RIGHTBRC SEMICOLON
235

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
236 237
/* Precedences */

238
%nonassoc prec_mark
239 240 241 242 243 244 245 246 247 248
%nonassoc prec_post
%nonassoc BAR

%nonassoc prec_triple
%nonassoc prec_simple

%nonassoc IN
%right SEMICOLON
%nonassoc prec_no_else
%nonassoc DOT ELSE
249
%nonassoc prec_named
250
%nonassoc COLON
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
251

Andrei Paskevich's avatar
Andrei Paskevich committed
252
%right ARROW LRARROW
253 254
%right OR BARBAR
%right AND AMPAMP
Andrei Paskevich's avatar
Andrei Paskevich committed
255
%nonassoc NOT
256
%left EQUAL LTGT OP1
257 258
%nonassoc LARROW
%nonassoc RIGHTSQ    /* stronger than <- for e1[e2 <- e3] */
259
%left OP2
260
%left OP3
261
%left OP4
262
%nonassoc prec_prefix_op
263
%left prec_app
264 265
%nonassoc LEFTSQ
%nonassoc OPPREF
266

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
267 268
/* Entry points */

269
%type <unit Env.library -> string list -> unit> pre_logic_file
270
%start pre_logic_file
271
%type <Theory.theory Util.Mstr.t> logic_file
272
%start logic_file
273 274
%type <Ptree.program_file> program_file
%start program_file
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
275 276
%%

277 278 279 280
pre_logic_file:
| /* epsilon */  { Incremental.open_logic_file }
;

281
logic_file:
282
| list0_theory EOF  { Incremental.close_logic_file () }
283 284 285
;

/* File, theory, namespace */
286

287 288 289
list0_theory:
| /* epsilon */         { () }
| theory list0_theory   { () }
290 291
;

292
theory_head:
293
| THEORY uident labels  { Incremental.open_theory (add_lab $2 $3) }
294 295
;

296
theory:
297
| theory_head list0_decl END  { Incremental.close_theory (floc_i 1) }
298 299
;

300
list0_decl:
301 302 303 304 305 306
| /* epsilon */        { () }
| new_decl list0_decl  { () }
;

new_decl:
| decl
307
   { Incremental.new_decl $1 }
308 309
| use_clone
   { Incremental.new_use_clone $1 }
310
| namespace_head namespace_import namespace_name list0_decl END
311
   { Incremental.close_namespace (floc_i 3) $2 $3 }
312 313
;

314
namespace_head:
315
| NAMESPACE  { Incremental.open_namespace () }
316 317 318 319 320 321 322 323
;

namespace_import:
| /* epsilon */  { false }
| IMPORT         { true }
;

namespace_name:
324
| uident      { Some $1.id }
325 326 327 328 329
| UNDERSCORE  { None }
;

/* Declaration */

330
decl:
331 332
| TYPE list1_type_decl
    { TypeDecl $2 }
333 334
| CONSTANT logic_decl_constant
    { LogicDecl [$2] }
Andrei Paskevich's avatar
Andrei Paskevich committed
335 336 337
| FUNCTION list1_logic_decl_function
    { LogicDecl $2 }
| PREDICATE list1_logic_decl_predicate
338
    { LogicDecl $2 }
339 340
| inductive list1_inductive_decl
    { IndDecl ($1, $2) }
341
| AXIOM ident labels COLON lexpr
342
    { PropDecl (floc (), Kaxiom, add_lab $2 $3, $5) }
343
| LEMMA ident labels COLON lexpr
344
    { PropDecl (floc (), Klemma, add_lab $2 $3, $5) }
345
| GOAL ident labels COLON lexpr
346
    { PropDecl (floc (), Kgoal, add_lab $2 $3, $5) }
347
| META sident list1_meta_arg_sep_comma
348
    { Meta (floc (), $2, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
349 350
;

351 352 353 354 355
inductive:
| INDUCTIVE   { Decl.Ind }
| COINDUCTIVE { Decl.Coind }
;

356 357
/* Use and clone */

358 359 360 361 362 363 364
use_clone:
| USE use
    { (floc (), $2, None) }
| CLONE use clone_subst
    { (floc (), $2, Some $3) }
;

365 366
use:
| imp_exp tqualid
367
    { { use_theory = $2; use_as = Some (qualid_last $2); use_imp_exp = $1 } }
368
| imp_exp tqualid AS uident
369
    { { use_theory = $2; use_as = Some $4.id; use_imp_exp = $1 } }
370
| imp_exp tqualid AS UNDERSCORE
371
    { { use_theory = $2; use_as = None; use_imp_exp = $1 } }
372 373
;

374
imp_exp:
375 376 377
| IMPORT        { Some true }
| EXPORT        { None }
| /* epsilon */ { Some false }
378 379 380 381 382 383 384 385 386 387 388 389 390
;

clone_subst:
| /* epsilon */          { [] }
| WITH list1_comma_subst { $2 }
;

list1_comma_subst:
| subst                         { [$1] }
| subst COMMA list1_comma_subst { $1 :: $3 }
;

subst:
391 392 393 394 395 396 397
| NAMESPACE ns     EQUAL ns     { CSns   (floc (), $2, $4) }
| TYPE      qualid EQUAL qualid { CStsym (floc (), $2, $4) }
| CONSTANT  qualid EQUAL qualid { CSfsym (floc (), $2, $4) }
| FUNCTION  qualid EQUAL qualid { CSfsym (floc (), $2, $4) }
| PREDICATE qualid EQUAL qualid { CSpsym (floc (), $2, $4) }
| LEMMA     qualid              { CSlemma (floc (), $2) }
| GOAL      qualid              { CSgoal  (floc (), $2) }
398 399
;

400 401 402 403 404
ns:
| uqualid { Some $1 }
| DOT     { None }
;

405 406 407 408 409 410 411 412
/* Meta args */

list1_meta_arg_sep_comma:
| meta_arg                                { [$1] }
| meta_arg COMMA list1_meta_arg_sep_comma { $1 :: $3 }
;

meta_arg:
Andrei Paskevich's avatar
Andrei Paskevich committed
413
| TYPE      qualid { PMAts  $2 }
414 415
| FUNCTION  qualid { PMAfs  $2 }
| PREDICATE qualid { PMAps  $2 }
Andrei Paskevich's avatar
Andrei Paskevich committed
416 417
| PROP      qualid { PMApr  $2 }
| STRING           { PMAstr $1 }
418
| INTEGER          { PMAint (small_integer $1) }
419 420
;

421 422 423
/* Type declarations */

list1_type_decl:
424 425
| type_decl                       { [$1] }
| type_decl WITH list1_type_decl  { $1 :: $3 }
426 427 428
;

type_decl:
429
| lident labels type_args typedefn
430
  { let model, vis, def = $4 in
431
    { td_loc = floc (); td_ident = add_lab $1 $2;
432
      td_params = $3; td_model = model; td_vis = vis; td_def = def } }
433 434
;

435
type_args:
436 437
| /* epsilon */             { [] }
| type_var labels type_args { add_lab $1 $2 :: $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
438 439 440
;

typedefn:
441 442 443 444 445 446 447 448 449 450 451 452 453 454
| /* epsilon */                         { false, Public, TDabstract }
| equal_model visibility typecases      { $1,    $2,     TDalgebraic $3 }
| equal_model visibility BAR typecases  { $1,    $2,     TDalgebraic $4 }
| equal_model visibility record_type    { $1,    $2,     TDrecord $3 }
/* abstract/private is not allowed for alias type */
| equal_model visibility primitive_type
    { if $2 <> Public then Loc.error ~loc:(floc_i 2) Parsing.Parse_error;
      $1, Public, TDalias $3 }
;

visibility:
| /* epsilon */ { Public }
| PRIVATE       { Private }
| ABSTRACT      { Abstract }
455 456 457 458 459
;

equal_model:
| EQUAL { false }
| MODEL { true }
460 461 462
;

record_type:
Andrei Paskevich's avatar
Andrei Paskevich committed
463
| LEFTREC list1_record_field opt_semicolon RIGHTREC { List.rev $2 }
464 465 466 467
;

list1_record_field:
| record_field                              { [$1] }
468
| list1_record_field SEMICOLON record_field { $3 :: $1 }
469 470
;

471 472 473 474 475 476 477 478
field_modifiers:
| /* epsilon */ { false, false }
| MUTABLE       { true,  false }
| GHOST         { false, true  }
| GHOST MUTABLE { true,  true  }
| MUTABLE GHOST { true,  true  }
;

479
record_field:
480 481 482 483 484 485
| field_modifiers lident labels COLON primitive_type
   { { f_loc = floc ();
       f_ident = add_lab $2 $3;
       f_mutable = fst $1;
       f_ghost = snd $1;
       f_pty = $5 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
486 487 488 489 490 491 492 493
;

typecases:
| typecase                { [$1] }
| typecase BAR typecases  { $1::$3 }
;

typecase:
494
| uident labels params   { (floc (), add_lab $1 $2, $3) }
495 496 497 498
;

/* Logic declarations */

Andrei Paskevich's avatar
Andrei Paskevich committed
499 500 501 502 503 504 505 506 507 508
list1_logic_decl_function:
| logic_decl_function                        { [$1] }
| logic_decl_function WITH list1_logic_decl  { $1 :: $3 }
;

list1_logic_decl_predicate:
| logic_decl_predicate                        { [$1] }
| logic_decl_predicate WITH list1_logic_decl  { $1 :: $3 }
;

509
list1_logic_decl:
510 511
| logic_decl                        { [$1] }
| logic_decl WITH list1_logic_decl  { $1 :: $3 }
512 513
;

514 515 516 517 518 519
logic_decl_constant:
| lident_rich labels COLON primitive_type logic_def_option
  { { ld_loc = floc (); ld_ident = add_lab $1 $2;
      ld_params = []; ld_type = Some $4; ld_def = $5 } }
;

Andrei Paskevich's avatar
Andrei Paskevich committed
520 521 522 523 524 525 526 527 528 529 530 531
logic_decl_function:
| lident_rich labels params COLON primitive_type logic_def_option
  { { ld_loc = floc (); ld_ident = add_lab $1 $2;
      ld_params = $3; ld_type = Some $5; ld_def = $6 } }
;

logic_decl_predicate:
| lident_rich labels params logic_def_option
  { { ld_loc = floc (); ld_ident = add_lab $1 $2;
      ld_params = $3; ld_type = None; ld_def = $4 } }
;

532
logic_decl:
533
| lident_rich labels params logic_type_option logic_def_option
534
  { { ld_loc = floc (); ld_ident = add_lab $1 $2;
535
      ld_params = $3; ld_type = $4; ld_def = $5 } }
536 537 538 539 540 541 542 543 544 545
;

logic_type_option:
| /* epsilon */        { None }
| COLON primitive_type { Some $2 }
;

logic_def_option:
| /* epsilon */ { None }
| EQUAL lexpr   { Some $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
546 547
;

548 549 550
/* Inductive declarations */

list1_inductive_decl:
551 552
| inductive_decl                            { [$1] }
| inductive_decl WITH list1_inductive_decl  { $1 :: $3 }
553 554 555
;

inductive_decl:
556
| lident_rich labels params inddefn
557
  { { in_loc = floc (); in_ident = add_lab $1 $2;
558
      in_params = $3; in_def = $4 } }
Andrei Paskevich's avatar
Andrei Paskevich committed
559
;
560

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
561 562 563 564 565 566 567 568 569 570 571
inddefn:
| /* epsilon */       { [] }
| EQUAL bar_ indcases { $3 }
;

indcases:
| indcase               { [$1] }
| indcase BAR indcases  { $1::$3 }
;

indcase:
572
| ident labels COLON lexpr { (floc (), add_lab $1 $2, $4) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
573 574
;

575 576 577 578 579 580 581 582
/* Type expressions */

primitive_type:
| primitive_type_arg           { $1 }
| lqualid primitive_type_args  { PPTtyapp ($2, $1) }
;

primitive_type_non_lident:
583 584
| primitive_type_arg_non_lident           { $1 }
| uqualid DOT lident primitive_type_args  { PPTtyapp ($4, Qdot ($1, $3)) }
585 586 587 588 589 590 591 592
;

primitive_type_args:
| primitive_type_arg                      { [$1] }
| primitive_type_arg primitive_type_args  { $1 :: $2 }
;

primitive_type_arg:
593
| lident                         { PPTtyapp ([], Qident $1) }
594 595 596 597
| primitive_type_arg_non_lident  { $1 }
;

primitive_type_arg_non_lident:
598 599
| uqualid DOT lident
   { PPTtyapp ([], Qdot ($1, $3)) }
600 601 602 603
| type_var
   { PPTtyvar $1 }
| LEFTPAR primitive_type COMMA list1_primitive_type_sep_comma RIGHTPAR
   { PPTtuple ($2 :: $4) }
604 605 606 607 608 609
| LEFTPAR RIGHTPAR
   { PPTtuple [] }
| LEFTPAR primitive_type RIGHTPAR
   { $2 }
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
610 611 612 613 614
list1_primitive_type_sep_comma:
| primitive_type                                      { [$1] }
| primitive_type COMMA list1_primitive_type_sep_comma { $1 :: $3 }
;

615
type_var:
616
| QUOTE lident { $2 }
617 618
;

619 620
/* Logic expressions */

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
621
lexpr:
622
| lexpr ARROW lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
623
   { infix_pp $1 PPimplies $3 }
624
| lexpr LRARROW lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
625
   { infix_pp $1 PPiff $3 }
626
| lexpr OR lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
627
   { infix_pp $1 PPor $3 }
628
| lexpr BARBAR lexpr
629
   { infix_pp (mk_pp (PPnamed (Lstr Term.asym_label, $1))) PPor $3 }
630
| lexpr AND lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
631
   { infix_pp $1 PPand $3 }
632
| lexpr AMPAMP lexpr
633
   { infix_pp (mk_pp (PPnamed (Lstr Term.asym_label, $1))) PPand $3 }
634
| NOT lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
635
   { prefix_pp PPnot $2 }
636
| lexpr EQUAL lexpr
637
   { mk_l_infix $1 "=" $3 }
638
| lexpr LTGT lexpr
639
   { prefix_pp PPnot (mk_l_infix $1 "=" $3) }
640
| lexpr OP1 lexpr
641
   { mk_l_infix $1 $2 $3 }
642
| lexpr OP2 lexpr
643
   { mk_l_infix $1 $2 $3 }
644
| lexpr OP3 lexpr
645
   { mk_l_infix $1 $2 $3 }
646
| lexpr OP4 lexpr
647
   { mk_l_infix $1 $2 $3 }
648
| prefix_op lexpr %prec prec_prefix_op
649
   { mk_l_prefix $1 $2 }
650 651
| qualid list1_lexpr_arg
   { mk_pp (PPapp ($1, $2)) }
652
| IF lexpr THEN lexpr ELSE lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
653
   { mk_pp (PPif ($2, $4, $6)) }
Andrei Paskevich's avatar
Andrei Paskevich committed
654 655
| quant list1_param_var_sep_comma triggers DOT lexpr
   { mk_pp (PPquant ($1, $2, $3, $5)) }
656 657
| label lexpr %prec prec_named
   { mk_pp (PPnamed ($1, $2)) }
658
| LET pattern EQUAL lexpr IN lexpr
659 660
   { match $2.pat_desc with
       | PPpvar id -> mk_pp (PPlet (id, $4, $6))
Andrei Paskevich's avatar
Andrei Paskevich committed
661 662
       | _ -> mk_pp (PPmatch ($4, [$2, $6])) }
| MATCH lexpr WITH bar_ match_cases END
663
   { mk_pp (PPmatch ($2, $5)) }
Andrei Paskevich's avatar
Andrei Paskevich committed
664 665
| MATCH lexpr COMMA list1_lexpr_sep_comma WITH bar_ match_cases END
   { mk_pp (PPmatch (mk_pp (PPtuple ($2::$4)), $7)) }
666 667
| EPSILON lident labels COLON primitive_type DOT lexpr
   { mk_pp (PPeps (add_lab $2 $3, $5, $7)) }
668
| lexpr COLON primitive_type
669
   { mk_pp (PPcast ($1, $3)) }
670
| lexpr_arg
671 672 673
   { $1 }
;

674 675 676 677 678 679 680 681 682
list1_field_value:
| field_value                             { [$1] }
| list1_field_value SEMICOLON field_value { $3 :: $1 }
;

field_value:
| lqualid EQUAL lexpr { $1, $3 }
;

683 684 685
list1_lexpr_arg:
| lexpr_arg                 { [$1] }
| lexpr_arg list1_lexpr_arg { $1::$2 }
Andrei Paskevich's avatar
Andrei Paskevich committed
686
;
687

688
constant:
689 690
| INTEGER   { Term.ConstInt $1 }
| FLOAT     { Term.ConstReal $1 }
691 692
;

693
lexpr_arg:
694 695 696 697 698 699
| qualid            { mk_pp (PPvar $1) }
| constant          { mk_pp (PPconst $1) }
| TRUE              { mk_pp PPtrue }
| FALSE             { mk_pp PPfalse }
| OPPREF lexpr_arg  { mk_l_prefix $1 $2 }
| lexpr_sub         { $1 }
700
| QUOTE uident      { mk_pp (PPvar (Qident (quote $2))) }
701 702 703
;

lexpr_dot:
704 705 706
| lqualid_copy      { mk_pp (PPvar $1) }
| OPPREF lexpr_dot  { mk_l_prefix $1 $2 }
| lexpr_sub         { $1 }
707 708 709
;

lexpr_sub:
710
| lexpr_dot DOT lqualid_rich
711
   { mk_pp (PPapp ($3, [$1])) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
712 713
| LEFTPAR lexpr RIGHTPAR
   { $2 }
714 715 716 717
| LEFTPAR RIGHTPAR
   { mk_pp (PPtuple []) }
| LEFTPAR lexpr COMMA list1_lexpr_sep_comma RIGHTPAR
   { mk_pp (PPtuple ($2 :: $4)) }
718 719
| LEFTREC list1_field_value opt_semicolon RIGHTREC
   { mk_pp (PPrecord (List.rev $2)) }
Andrei Paskevich's avatar
Andrei Paskevich committed
720 721
| LEFTREC lexpr_arg WITH list1_field_value opt_semicolon RIGHTREC
   { mk_pp (PPupdate ($2, List.rev $4)) }
722
| lexpr_arg LEFTSQ lexpr RIGHTSQ
723
   { mk_l_mixfix2 "[]" $1 $3 }
724
| lexpr_arg LEFTSQ lexpr LARROW lexpr RIGHTSQ
725
   { mk_l_mixfix3 "[<-]" $1 $3 $5 }
Andrei Paskevich's avatar
Andrei Paskevich committed
726
;
727

Andrei Paskevich's avatar
Andrei Paskevich committed
728 729 730 731
quant:
| FORALL  { PPforall }
| EXISTS  { PPexists }
| LAMBDA  { PPlambda }
732 733
| FUNC    { PPfunc }
| PRED    { PPpred }
Andrei Paskevich's avatar
Andrei Paskevich committed
734 735
;

736
/* Triggers */
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
737

738 739 740 741
triggers:
| /* epsilon */                         { [] }
| LEFTSQ list1_trigger_sep_bar RIGHTSQ  { $2 }
;
742

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
list1_trigger_sep_bar:
| trigger                           { [$1] }
| trigger BAR list1_trigger_sep_bar { $1 :: $3 }
;

trigger:
| list1_lexpr_sep_comma { $1 }
;

list1_lexpr_sep_comma:
| lexpr                             { [$1] }
| lexpr COMMA list1_lexpr_sep_comma { $1 :: $3 }
;

/* Match expressions */
758

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
759 760 761 762 763 764
match_cases:
| match_case                  { [$1] }
| match_case BAR match_cases  { $1::$3 }
;

match_case:
Andrei Paskevich's avatar
Andrei Paskevich committed
765
| pattern ARROW lexpr   { ($1,$3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
766 767 768
;

pattern:
Andrei Paskevich's avatar
Andrei Paskevich committed
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
| pat_conj              { $1 }
| pat_conj BAR pattern  { mk_pat (PPpor ($1, $3)) }
;

pat_conj:
| pat_uni                      { $1 }
| pat_uni COMMA list1_pat_uni  { mk_pat (PPptuple ($1::$3)) }
;

list1_pat_uni:
| pat_uni                      { [$1] }
| pat_uni COMMA list1_pat_uni  { $1::$3 }
;

pat_uni:
784 785 786
| pat_arg                   { $1 }
| uqualid list1_pat_arg     { mk_pat (PPpapp ($1, $2)) }
| pat_uni AS lident labels  { mk_pat (PPpas ($1, add_lab $3 $4)) }
Andrei Paskevich's avatar
Andrei Paskevich committed
787
;
788

789
list1_pat_arg:
Andrei Paskevich's avatar
Andrei Paskevich committed
790 791 792
| pat_arg                { [$1] }
| pat_arg list1_pat_arg  { $1::$2 }
;
793

794
pat_arg:
Andrei Paskevich's avatar
Andrei Paskevich committed
795
| UNDERSCORE                { mk_pat (PPpwild) }
796
| lident labels             { mk_pat (PPpvar (add_lab $1 $2)) }
Andrei Paskevich's avatar
Andrei Paskevich committed
797 798 799
| uqualid                   { mk_pat (PPpapp ($1, [])) }
| LEFTPAR RIGHTPAR          { mk_pat (PPptuple []) }
| LEFTPAR pattern RIGHTPAR  { $2 }
Andrei Paskevich's avatar
Andrei Paskevich committed
800 801 802 803 804 805 806 807 808 809
| LEFTREC pfields RIGHTREC  { mk_pat (PPprec $2) }
;

pfields:
| pat_field opt_semicolon       { [$1] }
| pat_field SEMICOLON pfields   { $1::$3 }
;

pat_field:
| lqualid EQUAL pattern   { ($1, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
810 811
;

812
/* Parameters */
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
813

814 815 816
params:
| /* epsilon */   { [] }
| param params    { $1 @ $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
817 818
;

819 820 821 822 823 824 825 826 827 828 829 830 831
param:
| LEFTPAR param_var RIGHTPAR
   { $2 }
| LEFTPAR param_type RIGHTPAR
   { [None, $2] }
| LEFTPAR param_type COMMA list1_primitive_type_sep_comma RIGHTPAR
   { [None, PPTtuple ($2::$4)] }
| LEFTPAR RIGHTPAR
   { [None, PPTtuple []] }
| type_var
   { [None, PPTtyvar $1] }
| lqualid
   { [None, PPTtyapp ([], $1)] }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
832 833
;

834 835 836 837 838 839 840 841
param_type:
| lident param_type_cont
   { PPTtyapp ($2, Qident $1) }
| lident list1_lident param_type_cont
   { let id2ty i = PPTtyapp ([], Qident i) in
     PPTtyapp (List.map id2ty $2 @ $3, Qident $1) }
| primitive_type_non_lident
   { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
842 843
;

844 845 846 847
param_type_cont:
| /* epsilon */                                      { [] }
| primitive_type_arg_non_lident                      { [$1] }
| primitive_type_arg_non_lident primitive_type_args  { $1 :: $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
848 849
;

850 851 852
list1_param_var_sep_comma:
| param_var                                  { $1 }
| param_var COMMA list1_param_var_sep_comma  { $1 @ $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
853 854
;

855 856 857
param_var:
| list1_lident COLON primitive_type
   { List.map (fun id -> (Some id, $3)) $1 }
858 859 860 861 862 863
| list1_lident label labels list0_lident_labels COLON primitive_type
   { let l = match List.rev $1 with
       | i :: l -> add_lab i ($2 :: $3) :: l
       | [] -> assert false
     in
     List.map (fun id -> (Some id, $6)) (List.rev_append l $4) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
864 865
;

866
list1_lident:
867 868
| lident               { [$1] }
| lident list1_lident  { $1 :: $2 }
869 870
;

871 872 873 874 875
list0_lident_labels:
| /* epsilon */                      { [] }
| lident labels list0_lident_labels  { add_lab $1 $2 :: $3 }
;

876 877 878 879 880
/* Idents */

ident:
| uident { $1 }
| lident { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
881 882
;

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
uident:
| UIDENT          { mk_id $1 (floc ()) }
;

lident:
| LIDENT          { mk_id $1 (floc ()) }
| lident_keyword  { mk_id $1 (floc ()) }
;

lident_keyword:
| MODEL           { "model" }
;

/* Idents + symbolic operations' names */

898 899 900
ident_rich:
| uident      { $1 }
| lident_rich { $1 }
901 902
;

903
lident_rich:
904 905 906
| lident                      { $1 }
| LEFTPAR lident_op RIGHTPAR  { mk_id $2 (floc ()) }
| LEFTPAR_STAR_RIGHTPAR       { mk_id (infix "*") (floc ()) }
907 908
;

909
lident_op:
910 911 912 913 914 915
| prefix_op             { infix $1 }
| prefix_op UNDERSCORE  { prefix $1 }
| EQUAL                 { infix "=" }
| OPPREF                { prefix $1 }
| LEFTSQ RIGHTSQ        { mixfix "[]" }
| LEFTSQ LARROW RIGHTSQ { mixfix "[<-]" }
916 917
;

918
prefix_op:
919 920 921 922 923 924
| OP1   { $1 }
| OP2   { $1 }
| OP3   { $1 }
| OP4   { $1 }
;

925
/* Qualified idents */
926

927 928 929
qualid:
| ident_rich              { Qident $1 }
| uqualid DOT ident_rich  { Qdot ($1, $3) }
930 931
;

932 933 934
lqualid_rich:
| lident_rich             { Qident $1 }
| uqualid DOT lident_rich { Qdot ($1, $3) }
935 936 937
;

lqualid:
938 939
| lident              { Qident $1 }
| uqualid DOT lident  { Qdot ($1, $3) }
940 941
;

942 943 944 945
/* copy of lqualid to avoid yacc conflicts */
lqualid_copy:
| lident              { Qident $1 }
| uqualid DOT lident  { Qdot ($1, $3) }
946 947
;

948 949 950
uqualid:
| uident              { Qident $1 }
| uqualid DOT uident  { Qdot ($1, $3) }
951 952
;

953 954
/* Theory/Module names */

955 956 957
tqualid:
| uident                { Qident $1 }
| any_qualid DOT uident { Qdot ($1, $3) }
Andrei Paskevich's avatar
Andrei Paskevich committed
958
;
959

960
any_qualid:
961 962 963 964 965 966 967
| sident                { Qident $1 }
| any_qualid DOT sident { Qdot ($1, $3) }
;

sident:
| ident   { $1 }
| STRING  { mk_id $1 (floc ()) }
Andrei Paskevich's avatar
Andrei Paskevich committed
968
;
969 970 971

/* Misc */

972
label:
Andrei Paskevich's avatar
Andrei Paskevich committed
973
| STRING    { Lstr (Ident.create_label $1) }
974
| POSITION  { Lpos $1 }
975 976
;

977 978 979 980 981
labels:
| /* epsilon */ { [] }
| label labels  { $1 :: $2 }
;

982 983 984
bar_:
| /* epsilon */ { () }
| BAR           { () }
985 986
;

987 988 989
/****************************************************************************/

program_file:
990
| list0_theory_or_module_ EOF { $1 }
991 992
;

993
list0_theory_or_module_:
994 995
| /* epsilon */
   { [] }
996
| list1_theory_or_module_
997 998 999
   { $1 }
;

1000 1001
list1_theory_or_module_:
| theory_or_module_
1002
   { [$1] }
1003
| theory_or_module_ list1_theory_or_module_
1004 1005 1006
   { $1 :: $2 }
;

1007 1008
theory_or_module_:
| THEORY uident labels list0_full_decl END
1009
   { Ptheory { pth_name = add_lab $2 $3; pth_decl = $4; } }
1010
| MODULE uident labels list0_program_decl END
1011
   { Pmodule { mod_name = add_lab $2 $3; mod_decl = $4; } }
1012 1013
;

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
list0_full_decl:
| /* epsilon */
   { [] }
| list1_full_decl
   { $1 }
;

list1_full_decl:
| full_decl
   { [$1] }
| full_decl list1_full_decl
   { $1 :: $2 }
;

full_decl:
| decl
   { Dlogic $1 }
1031 1032 1033 1034
| use_clone
   { Duseclone $1 }
| NAMESPACE namespace_import namespace_name list0_full_decl END
   { Dnamespace (floc_i 3, $3, $2, $4) }
1035 1036
;

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
list0_program_decl:
| /* epsilon */
   { [] }
| list1_program_decl
   { $1 }
;

list1_program_decl:
| program_decl
   { [$1] }
| program_decl list1_program_decl
   { $1 :: $2 }
;

program_decl:
| decl
    { Dlogic $1 }
1054 1055
| use_clone
    { Duseclone $1 }
1056
| LET lident_rich_pgm labels list1_type_v_binder opt_cast EQUAL triple
1057
    { Dlet (add_lab $2 $3, mk_expr_i 7 (Efun ($4, cast_body $5 $7))) }
1058
| LET lident_rich_pgm labels EQUAL FUN list1_type_v_binder ARROW triple
1059 1060 1061
    { Dlet (add_lab $2 $3, mk_expr_i 8 (Efun ($6, $8))) }
| LET REC list1_recfun_sep_and
    { Dletrec $3 }
1062
| VAL lident_rich_pgm labels COLON type_v
1063
    { Dparam (add_lab $2 $3, $5) }
1064
| VAL lident_rich_pgm labels list1_type_v_param COLON type_c
1065 1066
    { let tv = Tarrow ($4, $6) in
      Dparam (add_lab $2 $3, tv) }
1067 1068
| EXCEPTION uident labels
    { Dexn (add_lab $2 $3, None) }
1069
| EXCEPTION uident labels primitive_type
1070 1071 1072
    { Dexn (add_lab $2 $3, Some $4) }
| USE use_module
    { $2 }
1073
| NAMESPACE namespace_import namespace_name list0_program_decl END
1074
    { Dnamespace (</