parser.mly 20 KB
Newer Older
1 2
/**************************************************************************/
/*                                                                        */
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
3 4 5 6 7
/*  Copyright (C) 2010-                                                   */
/*    Francois Bobot                                                      */
/*    Jean-Christophe Filliatre                                           */
/*    Johannes Kanig                                                      */
/*    Andrei Paskevich                                                    */
8 9 10 11 12 13 14 15 16 17 18
/*                                                                        */
/*  This software is free software; you can redistribute it and/or        */
/*  modify it under the terms of the GNU Library General Public           */
/*  License version 2.1, with the special exception on linking            */
/*  described in file LICENSE.                                            */
/*                                                                        */
/*  This software is distributed in the hope that it will be useful,      */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of        */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  */
/*                                                                        */
/**************************************************************************/
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

%{

  open Ptree
  open Parsing

  let loc () = (symbol_start_pos (), symbol_end_pos ())
  let loc_i i = (rhs_start_pos i, rhs_end_pos i)
  let loc_ij i j = (rhs_start_pos i, rhs_end_pos j)

  let mk_ppl loc d = { pp_loc = loc; pp_desc = d }
  let mk_pp d = mk_ppl (loc ()) d
  let mk_pp_i i d = mk_ppl (loc_i i) d
		    
  let infix_ppl loc a i b = mk_ppl loc (PPinfix (a, i, b))
  let infix_pp a i b = infix_ppl (loc ()) a i b

  let prefix_ppl loc p a = mk_ppl loc (PPprefix (p, a))
  let prefix_pp p a = prefix_ppl (loc ()) p a

(***
  let with_loc loc d = { pdesc = d; ploc = loc }
  let locate d = with_loc (loc ()) d
  let locate_i i d = with_loc (loc_i i) d

  let rec_name = function Srec (x,_,_,_,_,_) -> x | _ -> assert false

  let join (b,_) (_,e) = (b,e)

  let rec app f = function
    | [] -> 
	assert false
    | [a] -> 
	Sapp (f, a)
    | a :: l -> 
	let loc = join f.ploc a.ploc in 
	app (with_loc loc (Sapp (f, a))) l

  let bin_op (loc_op,op) e1 e2 =
    let f = with_loc loc_op (Svar op) in
    let f_e1 = with_loc (join e1.ploc loc_op) (Sapp (f, e1)) in
    locate (Sapp (f_e1, e2))
      
  let un_op (loc_op,op) e =
    locate (app (with_loc loc_op (Svar op)) [e])

  let ptype_c_of_v v =
    { pc_result_name = Ident.result;
      pc_result_type = v;
      pc_effect = { pe_reads = []; pe_writes = []; pe_raises = [] };
      pc_pre = []; 
      pc_post = None }

  let list_of_some = function None -> [] | Some x -> [x]

  (*s ensures a postcondition for a function body *)

  let force_function_post ?(warn=false) e = match e.pdesc with
    | Spost _ -> 
	e
    | _ -> 
       if warn then 
	 Format.eprintf 
	   "%ano postcondition for this function; true inserted@\n"
	   Loc.report_position e.ploc; 
       let q = 
	 { pa_name = Anonymous; pa_value = mk_pp PPtrue; pa_loc = loc () }
       in
       { e with pdesc = Spost (e, (q, []), Transparent) }
***)
%}

/* Tokens */ 

93
%token <string> LIDENT UIDENT
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
94 95 96 97 98
%token <string> INTEGER
%token <Ptree.real_constant> FLOAT
%token <string> STRING
%token ABSURD AMPAMP AND ARRAY ARROW AS ASSERT AT AXIOM 
%token BANG BAR BARBAR BEGIN 
99 100 101 102 103
%token BIGARROW BOOL CHECK CLONE COLON COLONEQUAL COMMA DO 
%token DONE DOT ELSE END EOF EQUAL
%token EXCEPTION EXISTS EXPORT EXTERNAL FALSE FOR FORALL FPI 
%token FUN FUNCTION GE GOAL GT
%token IF IMPORT IN INCLUDE INDUCTIVE INT INVARIANT
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
104
%token LE LEFTB LEFTBLEFTB LEFTPAR LEFTSQ LET LOGIC LRARROW LT MATCH MINUS
105
%token NAMESPACE NOT NOTEQ OF OR PARAMETER PERCENT PLUS PREDICATE PROP 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
106 107 108
%token QUOTE RAISE RAISES READS REAL REC REF RETURNS RIGHTB RIGHTBRIGHTB
%token RIGHTPAR RIGHTSQ 
%token SEMICOLON SLASH 
109
%token THEN THEORY TIMES TRUE TRY TYPE UNDERSCORE
110
%token UNIT USE VARIANT VOID WHILE WITH WRITES
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

/* Precedences */

%nonassoc prec_recfun
%nonassoc prec_fun
%left LEFTB LEFTBLEFTB
%left prec_simple

%left COLON 

%left prec_letrec
%left IN

%right SEMICOLON

%left prec_no_else
%left ELSE

%right prec_named
%left COLONEQUAL
%right prec_forall prec_exists
%right ARROW LRARROW
%right OR BARBAR
%right AND AMPAMP
%right NOT
%right prec_if
%left prec_relation EQUAL NOTEQ LT LE GT GE
%left PLUS MINUS
%left TIMES SLASH PERCENT
%right uminus
%left prec_app
%left prec_ident
%left LEFTSQ

/* Entry points */

%type <Ptree.lexpr> lexpr
%start lexpr
%type <Ptree.logic_file> logic_file
%start logic_file
%%

logic_file:
154 155
| list1_theory EOF
   { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
156 157 158 159 160 161 162 163 164 165 166
| EOF 
   { [] }
;

list1_decl:
| decl 
   { [$1] }
| decl list1_decl 
   { $1 :: $2 }
;

167 168 169 170 171 172 173
list0_decl:
| /* epsilon */
   { [] }
| list1_decl 
   { $1 }
;

174
ident:
175 176
| LIDENT { { id = $1; id_loc = loc () } }
| UIDENT { { id = $1; id_loc = loc () } }
177 178
;

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
lident:
| LIDENT { { id = $1; id_loc = loc () } }
;

uident:
| UIDENT { { id = $1; id_loc = loc () } }
;

lqualid:
| lident             { Qident $1 }
| uqualid DOT lident { Qdot ($1, $3) }
;

uqualid:
| uident             { Qident $1 }
| uqualid DOT uident { Qdot ($1, $3) }
195 196
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
197 198 199
any_qualid:
| ident                { Qident $1 }
| any_qualid DOT ident { Qdot ($1, $3) }
200 201
;

202
qualid:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
203 204
| ident             { Qident $1 }
| uqualid DOT ident { Qdot ($1, $3) }
205

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
206
decl:
207 208
| LOGIC list1_lident_sep_comma COLON logic_type
   { Logic (loc_i 3, $2, $4) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
209
| AXIOM uident COLON lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
210
   { Axiom (loc (), $2, $4) }
211
| PREDICATE lident LEFTPAR list0_logic_binder_sep_comma RIGHTPAR EQUAL lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
212
   { Predicate_def (loc (), $2, $4, $7) }
213
| INDUCTIVE lident COLON logic_type inddefn
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
214
   { Inductive_def (loc (), $2, $4, $5) }
215
| FUNCTION lident LEFTPAR list0_logic_binder_sep_comma RIGHTPAR COLON 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
216 217
  primitive_type EQUAL lexpr
   { Function_def (loc (), $2, $4, $7, $9) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
218
| GOAL uident COLON lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
219 220 221
   { Goal (loc (), $2, $4) }
| TYPE typedecl typedefn
   { let loc, vl, id = $2 in $3 loc vl id }
222 223 224 225
| USE use
   { Use (loc (), $2) }
| NAMESPACE uident list0_decl END
   { Namespace (loc (), $2, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
226 227
;

228 229 230 231 232 233 234 235
list1_theory:
| theory 
   { [$1] }
| theory list1_theory 
   { $1 :: $2 }
;

theory:
236
| THEORY uident list0_decl END 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
237
   { { pt_loc = loc (); pt_name = $2; pt_decl = $3 } }
238 239
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
240
typedecl:
241
| lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
242
    { (loc_i 1, [], $1) }
243
| type_var lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
244
    { (loc_i 2, [$1], $2) }
245
| LEFTPAR type_var COMMA list1_type_var_sep_comma RIGHTPAR lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
246 247 248 249 250
    { (loc_i 6, $2 :: $4, $6) }
;

typedefn:
| /* epsilon */
251
    { fun loc vl id -> TypeDecl (loc, vl, id) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
| EQUAL bar_ typecases typecont
    { fun loc vl id -> AlgType ((loc, vl, id, $3) :: $4) }
;

typecont:
| /* epsilon */
    { [] }
| AND typedecl EQUAL bar_ typecases typecont
    { let loc, vl, id = $2 in (loc, vl, id, $5) :: $6 }
;

typecases:
| typecase                { [$1] }
| typecase BAR typecases  { $1::$3 }
;

typecase:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
269
| uident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
270
    { (loc_i 1,$1,[]) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
271
| uident LEFTPAR list1_primitive_type_sep_comma RIGHTPAR
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
272 273 274 275 276 277 278 279 280 281 282 283 284 285
    { (loc_i 1,$1,$3) }
;

inddefn:
| /* epsilon */       { [] }
| EQUAL bar_ indcases { $3 }
;

indcases:
| indcase               { [$1] }
| indcase BAR indcases  { $1::$3 }
;

indcase:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
286
| uident COLON lexpr { (loc_i 1,$1,$3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
287 288 289
;

primitive_type:
290
/*
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
291 292 293 294 295 296 297 298
| INT 
   { PPTint }
| BOOL 
   { PPTbool }
| REAL 
   { PPTreal }
| UNIT 
   { PPTunit }
299
*/
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
300
| type_var 
301
   { PPTtyvar $1 }
302
| lqualid
303
   { PPTtyapp ([], $1) }
304
| primitive_type lqualid
305
   { PPTtyapp ([$1], $2) }
306
| LEFTPAR primitive_type COMMA list1_primitive_type_sep_comma RIGHTPAR lqualid
307
   { PPTtyapp ($2 :: $4, $6) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
/*
| LEFTPAR list1_primitive_type_sep_comma RIGHTPAR
   { match $2 with [p] -> p | _ -> raise Parse_error }
*/
;


logic_type:
| list0_primitive_type_sep_comma ARROW PROP
   { PPredicate $1 }
| PROP
   { PPredicate [] }
| list0_primitive_type_sep_comma ARROW primitive_type
   { PFunction ($1, $3) }
| primitive_type
   { PFunction ([], $1) }
;

list0_primitive_type_sep_comma:
| /* epsilon */                  { [] }
| list1_primitive_type_sep_comma { $1 }
;

list1_primitive_type_sep_comma:
| primitive_type                                      { [$1] }
| primitive_type COMMA list1_primitive_type_sep_comma { $1 :: $3 }
;

list0_logic_binder_sep_comma:
| /* epsilon */                { [] }
| list1_logic_binder_sep_comma { $1 }
;

list1_logic_binder_sep_comma:
| logic_binder                                    { [$1] }
| logic_binder COMMA list1_logic_binder_sep_comma { $1 :: $3 }
;

logic_binder:
347
| lident COLON primitive_type       
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    { (loc_i 1, $1, $3) }
/***
| ident COLON primitive_type ARRAY 
    { (loc_i 1, $1, PPTexternal ([$3], Ident.farray, loc_i 3)) }
***/
;

lexpr:
| lexpr ARROW lexpr 
   { infix_pp $1 PPimplies $3 }
| lexpr LRARROW lexpr 
   { infix_pp $1 PPiff $3 }
| lexpr OR lexpr 
   { infix_pp $1 PPor $3 }
| lexpr AND lexpr 
   { infix_pp $1 PPand $3 }
| NOT lexpr 
   { prefix_pp PPnot $2 }
| lexpr relation lexpr %prec prec_relation
   { infix_pp $1 $2 $3 }
| lexpr PLUS lexpr
   { infix_pp $1 PPadd $3 }
| lexpr MINUS lexpr
   { infix_pp $1 PPsub $3 }
| lexpr TIMES lexpr
   { infix_pp $1 PPmul $3 }
| lexpr SLASH lexpr
   { infix_pp $1 PPdiv $3 }
| lexpr PERCENT lexpr
   { infix_pp $1 PPmod $3 }
| MINUS lexpr %prec uminus
   { prefix_pp PPneg $2 }
380
| qualid
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
381
   { mk_pp (PPvar $1) }
382
| qualid LEFTPAR list1_lexpr_sep_comma RIGHTPAR
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
383
   { mk_pp (PPapp ($1, $3)) }
384
/***
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
385 386 387 388 389
| qualid_ident LEFTSQ lexpr RIGHTSQ
   { mk_pp (PPapp (Ident.access, [mk_pp_i 1 (PPvar $1); $3])) }
***/
| IF lexpr THEN lexpr ELSE lexpr %prec prec_if 
   { mk_pp (PPif ($2, $4, $6)) }
390
| FORALL list1_lident_sep_comma COLON primitive_type triggers 
391
  DOT lexpr %prec prec_forall
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
392 393 394 395 396 397
   { let rec mk = function
       | [] -> assert false
       | [id] -> mk_pp (PPforall (id, $4, $5, $7))
       | id :: l -> mk_pp (PPforall (id, $4, [], mk l))
     in
     mk $2 }
398
| EXISTS lident COLON primitive_type DOT lexpr %prec prec_exists
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
   { mk_pp (PPexists ($2, $4, $6)) }
| INTEGER
   { mk_pp (PPconst (ConstInt $1)) }
| FLOAT
   { mk_pp (PPconst (ConstFloat $1)) }
| TRUE
   { mk_pp PPtrue }
| FALSE
   { mk_pp PPfalse }    
/***
| VOID
   { mk_pp (PPconst ConstUnit) }
***/
| LEFTPAR lexpr RIGHTPAR
   { $2 }
| ident_or_string COLON lexpr %prec prec_named
   { mk_pp (PPnamed ($1, $3)) }
416
| LET lident EQUAL lexpr IN lexpr 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
   { mk_pp (PPlet ($2, $4, $6)) }
| MATCH lexpr WITH bar_ match_cases END
   { mk_pp (PPmatch ($2, $5)) }
;

match_cases:
| match_case                  { [$1] }
| match_case BAR match_cases  { $1::$3 }
;

match_case:
| pattern ARROW lexpr { ($1,$3) }
;

pattern:
432
| uqualid                                         { ($1, [], loc ()) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
433
| uqualid LEFTPAR list1_lident_sep_comma RIGHTPAR  { ($1, $3, loc ()) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
;

triggers:
| /* epsilon */                         { [] }
| LEFTSQ list1_trigger_sep_bar RIGHTSQ  { $2 }
;

list1_trigger_sep_bar:
| trigger                           { [$1] }
| trigger BAR list1_trigger_sep_bar { $1 :: $3 }
;

trigger:
  list1_lexpr_sep_comma { $1 }
;

list1_lexpr_sep_comma:
| lexpr                             { [$1] }
| lexpr COMMA list1_lexpr_sep_comma { $1 :: $3 }
;

relation:
| LT { PPlt }
| LE { PPle }
| GT { PPgt }
| GE { PPge }
| EQUAL { PPeq }
| NOTEQ { PPneq }
;

type_var:
| QUOTE ident { $2 }
;

list1_type_var_sep_comma:
| type_var                                { [$1] }
| type_var COMMA list1_type_var_sep_comma { $1 :: $3 }
;

473
/***
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
474 475 476 477 478
qualid_ident:
| IDENT          { $1, None }
| IDENT AT       { $1, Some "" }
| IDENT AT IDENT { $1, Some $3 }
;
479
***/
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
480 481

ident_or_string:
482
| ident  { $1.id }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
483 484 485 486 487 488 489 490
| STRING { $1 }
;

bar_:
| /* epsilon */ { () }
| BAR           { () }
;

491 492 493 494 495
list1_lident_sep_comma:
| lident                              { [$1] }
| lident COMMA list1_lident_sep_comma { $1 :: $3 }
;

496
use:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
497
| imp_exp any_qualid              
498
    { { use_theory = $2; use_as = None; use_imp_exp = $1 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
499 500
| imp_exp any_qualid AS uident
    { { use_theory = $2; use_as = Some $4; use_imp_exp = $1 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
501 502
;

503 504 505 506
imp_exp:
| IMPORT        { Import }
| EXPORT        { Export }
| /* epsilon */ { Nothing }
507 508
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
/******* programs **************************************************

list0_ident_sep_comma:
| /* epsilon * /         { [] }
| list1_ident_sep_comma { $1 }
;

decl:
| INCLUDE STRING
   { Include (loc_i 2,$2) }
| LET ident EQUAL expr
   { Program (loc_i 2,$2, $4) }
| LET ident binders EQUAL list0_bracket_assertion expr
   { Program (loc_i 2,$2, locate (Slam ($3, $5, force_function_post $6))) }
| LET REC recfun
   { let (loc,p) = $3 in Program (loc,rec_name p, locate p) }
| EXCEPTION ident
   { Exception (loc (), $2, None) }
| EXCEPTION ident OF primitive_type
   { Exception (loc (), $2, Some $4) }
| external_ PARAMETER list1_ident_sep_comma COLON type_v
   { Parameter (loc_i 3, $1, $3, $5) }

type_v:
| simple_type_v ARROW type_c
   { PVarrow ([Ident.anonymous, $1], $3) }
| ident COLON simple_type_v ARROW type_c
   { PVarrow ([($1, $3)], $5) }
| simple_type_v
   { $1 }
;

simple_type_v:
| primitive_type ARRAY    { PVref (PPTexternal ([$1], Ident.farray, loc_i 2)) }
| primitive_type REF      { PVref $1 }
| primitive_type          { PVpure $1 }
| LEFTPAR type_v RIGHTPAR { $2 }
;

type_c:
| LEFTB opt_assertion RIGHTB result effects LEFTB opt_post_condition RIGHTB
   { let id,v = $4 in
     { pc_result_name = id; pc_result_type = v;
       pc_effect = $5; pc_pre = list_of_some $2; pc_post = $7 } }
| type_v
   { ptype_c_of_v $1 }
;

result:
| RETURNS ident COLON type_v { $2, $4 }
| type_v                     { Ident.result, $1 }
;

effects:
| opt_reads opt_writes opt_raises
    { { pe_reads = $1; pe_writes = $2; pe_raises = $3 } }
;

opt_reads:
| /* epsilon * /               { [] }
| READS list0_ident_sep_comma { $2 }
;

opt_writes:
| /* epsilon * /                { [] }
| WRITES list0_ident_sep_comma { $2 }
;

opt_raises:
| /* epsilon * /                { [] }
| RAISES list0_ident_sep_comma { $2 }
;

opt_assertion:
| /* epsilon * /  { None }
| assertion      { Some $1 }
;

assertion:
| lexpr          
    { { pa_name = Anonymous; pa_value = $1; pa_loc = loc () } }
| lexpr AS ident 
    { { pa_name = Name $3; pa_value = $1; pa_loc = loc () } }
;

opt_post_condition:
| /* epsilon * /  { None }
| post_condition { Some $1 }
;

post_condition:
| assertion 
   { $1, [] }
| assertion BAR list1_exn_condition_sep_bar
   { $1, $3 }
| BAR list1_exn_condition_sep_bar
   { Format.eprintf "%awarning: no postcondition; false inserted@\n" 
       Loc.report_position (loc ());
     (* if Options.werror then exit 1; *)
     ({ pa_name = Anonymous; pa_value = mk_pp PPfalse; pa_loc = loc () }, $2) }
;

bracket_assertion:
| LEFTB assertion RIGHTB { $2 }
;

list1_bracket_assertion:
| bracket_assertion                         { [$1] }
| bracket_assertion list1_bracket_assertion { $1 :: $2 }
;

list0_bracket_assertion:
| /* epsilon * /           { [] }
| LEFTB RIGHTB            { [] }
| list1_bracket_assertion { $1 }
;

list1_exn_condition_sep_bar:
| exn_condition                                 { [$1] }
| exn_condition BAR list1_exn_condition_sep_bar { $1 :: $3 }
;

exn_condition:
| ident BIGARROW assertion { $1,$3 }
;

expr:
| simple_expr %prec prec_simple 
   { $1 }
| ident COLONEQUAL expr
   { locate 
       (Sapp (locate (Sapp (locate (Svar Ident.ref_set), 
			    locate_i 1 (Svar $1))),
	      $3)) }
| ident LEFTSQ expr RIGHTSQ COLONEQUAL expr
   { locate 
       (Sapp (locate 
		(Sapp (locate 
			 (Sapp (locate (Svar Ident.array_set), 
				locate_i 1 (Svar $1))),
			 $3)),
		$6)) }
| IF expr THEN expr ELSE expr
   { locate (Sif ($2, $4, $6)) }
| IF expr THEN expr %prec prec_no_else
   { locate (Sif ($2, $4, locate (Sconst ConstUnit))) }
| WHILE expr DO invariant_variant expr DONE
   { (* syntactic suget for
        try loop { invariant variant } if b then e else raise Exit
        with Exit -> void end *)
     let inv,var = $4 in
     locate 
       (Stry
	  (locate 
	     (Sloop (inv, var, 
		     locate 
		       (Sif ($2, $5,
			     locate (Sraise (exit_exn, None, None)))))),
	     [((exit_exn, None), locate (Sconst ConstUnit))])) }
| IDENT COLON expr
   { locate (Slabel ($1, $3)) }
| LET ident EQUAL expr IN expr
   { locate (Sletin ($2, $4, $6)) }
| LET ident EQUAL REF expr IN expr
   { locate (Sletref ($2, $5, $7)) }
| FUN binders ARROW list0_bracket_assertion expr %prec prec_fun
   { locate (Slam ($2, $4, force_function_post $5)) }
| LET ident binders EQUAL list0_bracket_assertion expr IN expr
   { let b =  force_function_post ~warn:true $6 in
     locate (Sletin ($2, locate (Slam ($3, $5, b)), $8)) }
| LET REC recfun %prec prec_letrec
   { let _loc,p = $3 in locate p }
| LET REC recfun IN expr
   { let _loc,p = $3 in locate (Sletin (rec_name p, locate p, $5)) }
| RAISE ident opt_cast
   { locate (Sraise ($2, None, $3)) }
| RAISE LEFTPAR ident expr RIGHTPAR opt_cast
   { locate (Sraise ($3, Some $4 , $6)) }
| TRY expr WITH bar_ list1_handler_sep_bar END
   { locate (Stry ($2, $5)) }
| ABSURD opt_cast
   { locate (Sabsurd $2) }
| simple_expr list1_simple_expr %prec prec_app
   { locate (app $1 $2) }
| expr BARBAR expr
   { locate (Slazy_or ($1, $3))
     (* let ptrue = locate (Sconst (ConstBool true)) in
     locate (Sif ($1, ptrue, $3)) *) }
| expr AMPAMP expr
   { locate (Slazy_and ($1, $3))
     (* let pf = locate (Sconst (ConstBool false)) in
     locate (Sif ($1, $3, pf)) *) }
| NOT expr
   { locate (Snot $2)
     (* let pf = locate (Sconst (ConstBool false)) in
     let pt = locate (Sconst (ConstBool true)) in
     locate (Sif ($2, pf, pt)) *) }
| expr relation_id expr %prec prec_relation
   { bin_op $2 $1 $3 }
| expr PLUS expr
   { bin_op (loc_i 2, Ident.t_add) $1 $3 }
| expr MINUS expr
   { bin_op (loc_i 2, Ident.t_sub) $1 $3 }
| expr TIMES expr
   { bin_op (loc_i 2, Ident.t_mul) $1 $3 }
| expr SLASH expr
   { bin_op (loc_i 2, Ident.t_div) $1 $3 }
| expr PERCENT expr
   { bin_op (loc_i 2, Ident.t_mod_int) $1 $3 }
| MINUS expr %prec uminus
   { un_op (loc_i 1, Ident.t_neg) $2 }
| expr SEMICOLON expr
   { locate (Sseq ($1, $3)) }
| ASSERT list1_bracket_assertion SEMICOLON expr 
   { locate (Sassert (`ASSERT,$2, $4)) }
| CHECK list1_bracket_assertion SEMICOLON expr 
   { locate (Sassert (`CHECK,$2, $4)) }
| expr LEFTB post_condition RIGHTB
   { locate (Spost ($1, $3, Transparent)) }
| expr LEFTBLEFTB post_condition RIGHTBRIGHTB
   { locate (Spost ($1, $3, Opaque)) }
;

simple_expr:
| ident %prec prec_ident
   { locate (Svar $1) }
| INTEGER
   { locate (Sconst (ConstInt $1)) }
| FLOAT
   { let f = $1 in locate (Sconst (ConstFloat f)) }
| VOID
   { locate (Sconst ConstUnit) }
| TRUE
   { locate (Sconst (ConstBool true)) }
| FALSE
   { locate (Sconst (ConstBool false)) }
| BANG ident
   { locate (Sderef $2) }
| ident LEFTSQ expr RIGHTSQ
   { locate 
       (Sapp (locate (Sapp (locate (Svar Ident.array_get), 
			    locate_i 1 (Svar $1))),
	      $3)) }
| LEFTSQ type_c RIGHTSQ
   { locate (Sany $2) }
| LEFTPAR expr RIGHTPAR
   { $2 }
| BEGIN expr END
   { $2 }
;

relation_id:
| LT    { loc (), Ident.t_lt }
| LE    { loc (), Ident.t_le }
| GT    { loc (), Ident.t_gt }
| GE    { loc (), Ident.t_ge }
| EQUAL { loc (), Ident.t_eq }
| NOTEQ { loc (), Ident.t_neq }
;

list1_simple_expr:
| simple_expr %prec prec_simple { [$1] }
| simple_expr list1_simple_expr { $1 :: $2 }
;

list1_handler_sep_bar:
| handler                           { [$1] }
| handler BAR list1_handler_sep_bar { $1 :: $3 }
;

handler:
| ident ARROW expr       { (($1, None), $3) }
| ident ident ARROW expr { (($1, Some $2), $4) }
;

opt_cast:
| /* epsilon * / { None }
| COLON type_v  { Some $2 }
;

invariant_variant:
| /* epsilon * / { None, None }
| LEFTB opt_invariant RIGHTB { $2, None }
| LEFTB opt_invariant VARIANT variant RIGHTB { $2, Some $4 }
;

opt_invariant:
| /* epsilon * /       { None }
| INVARIANT assertion { Some $2 }
;

recfun:
| ident binders COLON type_v opt_variant EQUAL 
  list0_bracket_assertion expr %prec prec_recfun
   { (loc_i 1),Srec ($1, $2, $4, $5, $7, force_function_post $8) }
;

opt_variant:
| LEFTB VARIANT variant RIGHTB { Some $3 } 
| /* epsilon * /                { None }
;

variant:
| lexpr FOR ident { ($1, $3) }
| lexpr           { ($1, Ident.t_zwf_zero) }
;

binders:
| list1_binder { List.flatten $1 }
;

list1_binder:
| binder              { [$1] }
| binder list1_binder { $1 :: $2 }
;

binder:
| LEFTPAR RIGHTPAR
   { [Ident.anonymous, PVpure PPTunit] }
| LEFTPAR list1_ident_sep_comma COLON type_v RIGHTPAR 
   { List.map (fun s -> (s, $4)) $2 }
;

****/