verifythis_2017_maximum_sum_submatrix.mlw 3.48 KB
Newer Older
1

2
(**
3

4 5 6 7 8 9
{1 VerifyThis @ ETAPS 2017 competition
   Challenge 2: Maximum-sum submatrix}

See https://formal.iti.kit.edu/ulbrich/verifythis2017/

Author: Jean-Christophe Filliâtre (CNRS)
10 11
*)

12 13 14 15
(* note: this is a 2D-version of maximum-sum subarray, for which several
   verified implementations can be found in maximum_subarray.mlw,
   including Kadane's linear algorithm *)

16 17
module Kadane2D

18 19 20 21 22
  use int.Int
  use ref.Refint
  use int.Sum
  use array.Array
  use matrix.Matrix
23 24 25

  (* maximum-sum subarray problem is assumed *)

26
  function array_sum (a: array int) (l h: int) : int
27 28
    = sum (fun i -> a[i]) l h

29 30 31
  val maximum_subarray (a: array int) : (s: int, lo: int, hi: int)
    ensures { 0 <= lo <= hi <= length a /\ s = array_sum a lo hi /\
              forall l h. 0 <= l <= h <= length a -> s >= array_sum a l h }
32 33 34 35 36 37 38 39

  (* sum of a submatrix *)

  function col (m: matrix int) (j i: int) : int = m.elts i j

  function matrix_sum (m: matrix int) (rl rh cl ch: int) : int
    = sum (fun j -> sum (col m j) rl rh) cl ch

40 41 42
  let maximum_submatrix (m: matrix int) :
      (s: int, rlo: int, rhi: int, clo: int, chi: int)
    ensures { (* this is a legal submatrix *)
43 44 45 46 47 48 49 50
              0 <= rlo <= rhi <= rows m /\
              0 <= clo <= chi <= columns m /\
              (* s is its sum *)
              s = matrix_sum m rlo rhi clo chi /\
              (* and it is maximal *)
              forall rl rh. 0 <= rl <= rh <= rows m ->
              forall cl ch. 0 <= cl <= ch <= columns m ->
              s >= matrix_sum m rl rh cl ch }
51
  = let a = Array.make m.columns 0 in
52 53 54 55 56 57 58 59 60 61 62 63
    let maxsum = ref 0 in
    let rlo = ref 0 in
    let rhi = ref 0 in
    let clo = ref 0 in
    let chi = ref 0 in
    for rl = 0 to rows m - 1 do
      invariant { 0 <= !rlo <= !rhi <= rows m }
      invariant { 0 <= !clo <= !chi <= columns m }
      invariant { !maxsum = matrix_sum m !rlo !rhi !clo !chi >= 0 }
      invariant { forall rl' rh. 0 <= rl' < rl -> rl' <= rh <= rows m ->
                  forall cl ch. 0 <= cl <= ch <= columns m ->
                  !maxsum >= matrix_sum m rl' rh cl ch }
64
      fill a 0 (columns m) 0;
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
      for rh = rl + 1 to rows m do
        invariant { 0 <= !rlo <= !rhi <= rows m }
        invariant { 0 <= !clo <= !chi <= columns m }
        invariant { !maxsum = matrix_sum m !rlo !rhi !clo !chi >= 0 }
        invariant { forall rl' rh'. 0 <= rl' <= rh' <= rows m ->
                    (rl' < rl \/ rl' = rl /\ rh' < rh) ->
                    forall cl ch. 0 <= cl <= ch <= columns m ->
                    !maxsum >= matrix_sum m rl' rh' cl ch }
        invariant { forall j. 0 <= j < columns m ->
                    a[j] = sum (col m j) rl (rh - 1) }
        (* update array a *)
        for c = 0 to columns m -1 do
          invariant { forall j. 0 <= j < c ->
                      a[j] = sum (col m j) rl rh }
          invariant { forall j. c <= j < columns m ->
                      a[j] = sum (col m j) rl (rh - 1) }
          a[c] <- a[c] + get m (rh - 1) c
        done;
        (* then use Kadane algorithme on array a *)
        let sum, lo, hi = maximum_subarray a in
        assert { sum = matrix_sum m rl rh lo hi };
        assert { forall cl ch. 0 <= cl <= ch <= columns m ->
                 sum >= matrix_sum m rl rh cl ch
                 by array_sum a cl ch = matrix_sum m rl rh cl ch };
        (* update the maximum if needed *)
        if sum > !maxsum then begin
          maxsum := sum;
          rlo := rl; rhi := rh;
          clo := lo; chi := hi
        end
      done;
    done;
97
    !maxsum, !rlo, !rhi, !clo, !chi
98 99

end