(********************************************************************) (* *) (* The Why3 Verification Platform / The Why3 Development Team *) (* Copyright 2010-2018 -- Inria - CNRS - Paris-Sud University *) (* *) (* This software is distributed under the terms of the GNU Lesser *) (* General Public License version 2.1, with the special exception *) (* on linking described in file LICENSE. *) (* *) (********************************************************************) (* This file is generated by Why3's Coq-realize driver *) (* Beware! Only edit allowed sections below *) Require Import BuiltIn. Require BuiltIn. (* Why3 goal *) Lemma andb_def : forall (x:bool) (y:bool), ((Init.Datatypes.andb x y) = match x with | true => y | false => false end). Proof. intros x y. apply refl_equal. Qed. (* Why3 goal *) Lemma orb_def : forall (x:bool) (y:bool), ((Init.Datatypes.orb x y) = match x with | false => y | true => true end). Proof. intros x y. apply refl_equal. Qed. (* Why3 goal *) Lemma notb_def : forall (x:bool), ((Init.Datatypes.negb x) = match x with | false => true | true => false end). Proof. intros x. apply refl_equal. Qed. (* Why3 goal *) Lemma xorb_def : forall (x:bool) (y:bool), ((Init.Datatypes.xorb x y) = match x with | false => y | true => (Init.Datatypes.negb y) end). Proof. intros x y. destruct x; destruct y; auto. Qed. (* Why3 goal *) Lemma implb_def : forall (x:bool) (y:bool), ((Init.Datatypes.implb x y) = match x with | false => true | true => y end). Proof. now intros [|] [|]. Qed.