(** Coincidence count Exercise proposed by Rustan Leino at Dagstuhl seminar 16131, March 2016 You are given two sequences of integers, sorted in increasing order and without duplicate elements, and you count the number of elements that appear in both sequences (in linear time and constant space). See also coincidence_count.mlw for a version using arrays. Authors: Jean-Christophe Filliâtre (CNRS) *) module CoincidenceCount use import list.List use import set.Fset use import list.Elements use list.Mem as L use import int.Int clone export list.Sorted with type t = int, predicate le = (<), goal Transitive.Trans let rec coincidence_count (a b: list int) : set int requires { sorted a } requires { sorted b } ensures { result == inter (elements a) (elements b) } variant { a, b } = match a, b with | Cons ha ta, Cons hb tb -> if ha = hb then add ha (coincidence_count ta tb) else if ha < hb then coincidence_count ta b else coincidence_count a tb | _ -> empty end end (* the same, with elements of any type *) module CoincidenceCountAnyType use import list.List use import set.Fset use import list.Elements use list.Mem as L use import int.Int type t val predicate eq (x y : t) ensures { result <-> x = y } val predicate rel (x y : t) clone import relations.TotalStrictOrder with type t, predicate rel, axiom . clone export list.Sorted with type t = t, predicate le = rel, goal Transitive.Trans let rec coincidence_count (a b: list t) : set t requires { sorted a } requires { sorted b } ensures { result == inter (elements a) (elements b) } variant { a, b } = match a, b with | Cons ha ta, Cons hb tb -> if eq ha hb then add ha (coincidence_count ta tb) else if rel ha hb then coincidence_count ta b else coincidence_count a tb | _ -> empty end end (* the same, using only lists *) module CoincidenceCountList use import list.List use import list.Mem use import int.Int clone export list.Sorted with type t = int, predicate le = (<), goal Transitive.Trans let rec coincidence_count (a b: list int) : list int requires { sorted a } requires { sorted b } ensures { forall x. mem x result <-> mem x a /\ mem x b } variant { a, b } = match a, b with | Cons ha ta, Cons hb tb -> if ha = hb then Cons ha (coincidence_count ta tb) else if ha < hb then coincidence_count ta b else coincidence_count a tb | _ -> Nil end end