(* This file is generated by Why3's Coq driver *) (* Beware! Only edit allowed sections below *) Require Import ZArith. Require Import Rbase. Definition unit := unit. Parameter ignore: forall (a:Type), a -> unit. Implicit Arguments ignore. Parameter label_ : Type. Parameter at1: forall (a:Type), a -> label_ -> a. Implicit Arguments at1. Parameter old: forall (a:Type), a -> a. Implicit Arguments old. Parameter power: Z -> Z -> Z. Axiom Power_0 : forall (x:Z), ((power x 0%Z) = 1%Z). Axiom Power_s : forall (x:Z) (n:Z), (0%Z < n)%Z -> ((power x n) = (x * (power x (n - 1%Z)%Z))%Z). Axiom Power_1 : forall (x:Z), ((power x 1%Z) = x). Axiom Power_sum : forall (x:Z) (n:Z) (m:Z), (0%Z <= n)%Z -> ((0%Z <= m)%Z -> ((power x (n + m)%Z) = ((power x n) * (power x m))%Z)). Theorem Power_mult : forall (x:Z) (n:Z) (m:Z), (0%Z <= n)%Z -> ((0%Z <= m)%Z -> ((power x (n * m)%Z) = (power (power x n) m))). (* YOU MAY EDIT THE PROOF BELOW *) intros x n m Hn Hm. generalize Hm. pattern m. apply Z_lt_induction; auto. intros n0 Hind Hn0. assert (h:(n0 = 0 \/ n0 > 0)%Z) by omega. destruct h. subst n0; rewrite Power_0; ring_simplify (n * 0)%Z. apply Power_0. replace (n*n0)%Z with (n*(n0-1)+n)%Z by ring. rewrite Power_sum; auto with zarith. rewrite Hind; auto with zarith. rewrite <- (Power_1 (power x n)) at 2. rewrite <- Power_sum; auto with zarith. ring_simplify (n0 - 1 + 1)%Z; auto. Qed. (* DO NOT EDIT BELOW *)