(* This file is generated by Why3's Coq driver *) (* Beware! Only edit allowed sections below *) Require Import BuiltIn. Require BuiltIn. Require int.Int. (* Why3 assumption *) Definition unit := unit. (* Why3 assumption *) Inductive ref (a:Type) {a_WT:WhyType a} := | mk_ref : a -> ref a. Axiom ref_WhyType : forall (a:Type) {a_WT:WhyType a}, WhyType (ref a). Existing Instance ref_WhyType. Implicit Arguments mk_ref [[a] [a_WT]]. (* Why3 assumption *) Definition contents {a:Type} {a_WT:WhyType a}(v:(ref a)): a := match v with | (mk_ref x) => x end. Axiom map : forall (a:Type) {a_WT:WhyType a} (b:Type) {b_WT:WhyType b}, Type. Parameter map_WhyType : forall (a:Type) {a_WT:WhyType a} (b:Type) {b_WT:WhyType b}, WhyType (map a b). Existing Instance map_WhyType. Parameter get: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b}, (map a b) -> a -> b. Parameter set: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b}, (map a b) -> a -> b -> (map a b). Axiom Select_eq : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b}, forall (m:(map a b)), forall (a1:a) (a2:a), forall (b1:b), (a1 = a2) -> ((get (set m a1 b1) a2) = b1). Axiom Select_neq : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b}, forall (m:(map a b)), forall (a1:a) (a2:a), forall (b1:b), (~ (a1 = a2)) -> ((get (set m a1 b1) a2) = (get m a2)). Parameter const: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b}, b -> (map a b). Axiom Const : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b}, forall (b1:b) (a1:a), ((get (const b1:(map a b)) a1) = b1). (* Why3 assumption *) Inductive array (a:Type) {a_WT:WhyType a} := | mk_array : Z -> (map Z a) -> array a. Axiom array_WhyType : forall (a:Type) {a_WT:WhyType a}, WhyType (array a). Existing Instance array_WhyType. Implicit Arguments mk_array [[a] [a_WT]]. (* Why3 assumption *) Definition elts {a:Type} {a_WT:WhyType a}(v:(array a)): (map Z a) := match v with | (mk_array x x1) => x1 end. (* Why3 assumption *) Definition length {a:Type} {a_WT:WhyType a}(v:(array a)): Z := match v with | (mk_array x x1) => x end. (* Why3 assumption *) Definition get1 {a:Type} {a_WT:WhyType a}(a1:(array a)) (i:Z): a := (get (elts a1) i). (* Why3 assumption *) Definition set1 {a:Type} {a_WT:WhyType a}(a1:(array a)) (i:Z) (v:a): (array a) := (mk_array (length a1) (set (elts a1) i v)). (* Why3 assumption *) Definition make {a:Type} {a_WT:WhyType a}(n:Z) (v:a): (array a) := (mk_array n (const v:(map Z a))). Axiom char : Type. Parameter char_WhyType : WhyType char. Existing Instance char_WhyType. (* Why3 assumption *) Definition matches(a1:(array char)) (i1:Z) (a2:(array char)) (i2:Z) (n:Z): Prop := ((0%Z <= i1)%Z /\ (i1 <= ((length a1) - n)%Z)%Z) /\ (((0%Z <= i2)%Z /\ (i2 <= ((length a2) - n)%Z)%Z) /\ forall (i:Z), ((0%Z <= i)%Z /\ (i < n)%Z) -> ((get1 a1 (i1 + i)%Z) = (get1 a2 (i2 + i)%Z))). Axiom matches_empty : forall (a1:(array char)) (a2:(array char)) (i1:Z) (i2:Z), ((0%Z <= i1)%Z /\ (i1 <= (length a1))%Z) -> (((0%Z <= i2)%Z /\ (i2 <= (length a2))%Z) -> (matches a1 i1 a2 i2 0%Z)). Axiom matches_right_extension : forall (a1:(array char)) (a2:(array char)) (i1:Z) (i2:Z) (n:Z), (matches a1 i1 a2 i2 n) -> ((i1 <= (((length a1) - n)%Z - 1%Z)%Z)%Z -> ((i2 <= (((length a2) - n)%Z - 1%Z)%Z)%Z -> (((get1 a1 (i1 + n)%Z) = (get1 a2 (i2 + n)%Z)) -> (matches a1 i1 a2 i2 (n + 1%Z)%Z)))). Axiom matches_contradiction_at_first : forall (a1:(array char)) (a2:(array char)) (i1:Z) (i2:Z) (n:Z), (0%Z < n)%Z -> ((~ ((get1 a1 i1) = (get1 a2 i2))) -> ~ (matches a1 i1 a2 i2 n)). Axiom matches_contradiction_at_i : forall (a1:(array char)) (a2:(array char)) (i1:Z) (i2:Z) (i:Z) (n:Z), (0%Z < n)%Z -> (((0%Z <= i)%Z /\ (i < n)%Z) -> ((~ ((get1 a1 (i1 + i)%Z) = (get1 a2 (i2 + i)%Z))) -> ~ (matches a1 i1 a2 i2 n))). Axiom matches_right_weakening : forall (a1:(array char)) (a2:(array char)) (i1:Z) (i2:Z) (n:Z) (n':Z), (matches a1 i1 a2 i2 n) -> ((n' < n)%Z -> (matches a1 i1 a2 i2 n')). Axiom matches_left_weakening : forall (a1:(array char)) (a2:(array char)) (i1:Z) (i2:Z) (n:Z) (n':Z), (matches a1 (i1 - (n - n')%Z)%Z a2 (i2 - (n - n')%Z)%Z n) -> ((n' < n)%Z -> (matches a1 i1 a2 i2 n')). Axiom matches_sym : forall (a1:(array char)) (a2:(array char)) (i1:Z) (i2:Z) (n:Z), (matches a1 i1 a2 i2 n) -> (matches a2 i2 a1 i1 n). Axiom matches_trans : forall (a1:(array char)) (a2:(array char)) (a3:(array char)) (i1:Z) (i2:Z) (i3:Z) (n:Z), (matches a1 i1 a2 i2 n) -> ((matches a2 i2 a3 i3 n) -> (matches a1 i1 a3 i3 n)). (* Why3 assumption *) Definition is_next(p:(array char)) (j:Z) (n:Z): Prop := ((0%Z <= n)%Z /\ (n < j)%Z) /\ ((matches p (j - n)%Z p 0%Z n) /\ forall (z:Z), ((n < z)%Z /\ (z < j)%Z) -> ~ (matches p (j - z)%Z p 0%Z z)). Axiom next_iteration : forall (p:(array char)) (a:(array char)) (i:Z) (j:Z) (n:Z), ((0%Z < j)%Z /\ (j < (length p))%Z) -> (((j <= i)%Z /\ (i <= (length a))%Z) -> ((matches a (i - j)%Z p 0%Z j) -> ((is_next p j n) -> (matches a (i - n)%Z p 0%Z n)))). Axiom next_is_maximal : forall (p:(array char)) (a:(array char)) (i:Z) (j:Z) (n:Z) (k:Z), ((0%Z < j)%Z /\ (j < (length p))%Z) -> (((j <= i)%Z /\ (i <= (length a))%Z) -> ((((i - j)%Z < k)%Z /\ (k < (i - n)%Z)%Z) -> ((matches a (i - j)%Z p 0%Z j) -> ((is_next p j n) -> ~ (matches a k p 0%Z (length p)))))). Axiom next_1_0 : forall (p:(array char)), (1%Z <= (length p))%Z -> (is_next p 1%Z 0%Z). (* Why3 goal *) Theorem WP_parameter_initnext : forall (p:Z), forall (p1:(map Z char)), let p2 := (mk_array p p1) in ((1%Z <= p)%Z -> ((0%Z <= p)%Z -> ((1%Z < p)%Z -> (((0%Z <= 1%Z)%Z /\ (1%Z < p)%Z) -> forall (next:(map Z Z)), (next = (set (const 0%Z:(map Z Z)) 1%Z 0%Z)) -> forall (j:Z) (i:Z) (next1:(map Z Z)), ((((((0%Z <= j)%Z /\ (j < i)%Z) /\ (i <= p)%Z) /\ (matches p2 (i - j)%Z p2 0%Z j)) /\ forall (z:Z), (((j + 1%Z)%Z < z)%Z /\ (z < (i + 1%Z)%Z)%Z) -> ~ (matches p2 ((i + 1%Z)%Z - z)%Z p2 0%Z z)) /\ forall (k:Z), ((0%Z < k)%Z /\ (k <= i)%Z) -> (is_next p2 k (get next1 k))) -> ((i < (p - 1%Z)%Z)%Z -> (((0%Z <= j)%Z /\ (j < p)%Z) -> (((0%Z <= i)%Z /\ (i < p)%Z) -> ((~ ((get p1 i) = (get p1 j))) -> ((j = 0%Z) -> forall (i1:Z), (i1 = (i + 1%Z)%Z) -> (((0%Z <= i1)%Z /\ (i1 < p)%Z) -> forall (next2:(map Z Z)), (next2 = (set next1 i1 0%Z)) -> forall (z:Z), (((j + 1%Z)%Z < z)%Z /\ (z < (i1 + 1%Z)%Z)%Z) -> ~ (matches p2 ((i1 + 1%Z)%Z - z)%Z p2 0%Z z))))))))))). (* YOU MAY EDIT THE PROOF BELOW *) intros n p1. intro p3. unfold p3. clear p3. intros _ _ hn _ _ _. intros j i next4 ((((hj, hi), h0), h1), h2). intros hi' _ _ neq j0. subst j. intros i1 hi1; subst i1. intros _ _ _ z hz. red; intro h. unfold matches, length , get1 in h. simpl in h. destruct h as (hy1, (hy2, hy3)). assert (case: (z = 2 \/ 2 < z)%Z) by omega. destruct case. subst z. absurd (get p1 i = get p1 0%Z); auto. generalize (hy3 0%Z). ring_simplify (i + 1 + 1 - 2 + 0)%Z. intuition. apply h1 with (z-1)%Z. omega. red; unfold length, get1; simpl. repeat split; try omega. intros. replace (i + 1 - (z - 1) + i0)%Z with (i + 1 + 1 - z + i0)%Z by omega. apply hy3. omega. Qed.