(********************************************************************) (* *) (* The Why3 Verification Platform / The Why3 Development Team *) (* Copyright 2010-2017 -- INRIA - CNRS - Paris-Sud University *) (* *) (* This software is distributed under the terms of the GNU Lesser *) (* General Public License version 2.1, with the special exception *) (* on linking described in file LICENSE. *) (* *) (********************************************************************) (* This file is generated by Why3's Coq-realize driver *) (* Beware! Only edit allowed sections below *) Require Import BuiltIn. Require BuiltIn. Require HighOrd. Require map.Map. (* Why3 goal *) Definition const: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b}, b -> (a -> b). Proof. intros a a_WT b b_WT v. intros i. exact v. Defined. (* Why3 goal *) Lemma const_def : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b}, forall (v:b), forall (us:a), (((const v: (a -> b)) us) = v). Proof. intros a a_WT b b_WT b1 a1. reflexivity. Qed.