Commit edbc6c28 by Jean-Christophe Filliâtre

### bitvectors: removed a Coq proof

parent c148dc7b
 ... ... @@ -216,7 +216,7 @@ Axiom Power_non_null : forall (n:Z), ~ ((pow21 n) = 0%R). Axiom Power_neg : forall (n:Z), ((pow21 (-n)%Z) = (1%R / (pow21 n))%R). Axiom Power_sum_aux : forall (n:Z) (m:Z), (0%Z <= m)%Z -> forall (m:Z) (n:Z), (0%Z <= m)%Z -> ((pow21 (n + m)%Z) = ((pow21 n) * (pow21 m))%R). Axiom Power_sum1 : ... ... @@ -352,7 +352,7 @@ Axiom to_nat_of_zero2 : ((to_nat_sub b j 0%Z) = (to_nat_sub b i 0%Z)). Axiom to_nat_of_zero : forall (b:bv) (i:Z) (j:Z), ((j < 32%Z)%Z /\ (0%Z <= i)%Z) -> forall (b:bv) (j:Z) (i:Z), ((j < 32%Z)%Z /\ (0%Z <= i)%Z) -> (forall (k:Z), ((k <= j)%Z /\ (i <= k)%Z) -> ((nth b k) = false)) -> ((to_nat_sub b j i) = 0%Z). ... ... @@ -562,7 +562,7 @@ Axiom to_nat_of_zero21 : ((to_nat_sub1 b j 0%Z) = (to_nat_sub1 b i 0%Z)). Axiom to_nat_of_zero1 : forall (b:bv1) (i:Z) (j:Z), ((j < 64%Z)%Z /\ (0%Z <= i)%Z) -> forall (b:bv1) (j:Z) (i:Z), ((j < 64%Z)%Z /\ (0%Z <= i)%Z) -> (forall (k:Z), ((k <= j)%Z /\ (i <= k)%Z) -> ((nth1 b k) = false)) -> ((to_nat_sub1 b j i) = 0%Z). ... ...
This diff is collapsed.
 ... ... @@ -5,12 +5,13 @@ ... ... @@ -169,7 +170,7 @@ ... ... @@ -185,7 +186,7 @@ ... ... @@ -204,10 +205,10 @@ ... ... @@ -240,7 +241,7 @@ ... ... @@ -300,7 +301,34 @@ ... ...
No preview for this file type
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!