Commit d31c675c authored by Francois Bobot's avatar Francois Bobot

encoding_decorate_mono : nearly done

parent a36cd4f7
......@@ -103,7 +103,7 @@ LIB_DRIVER = call_provers driver_ast driver_parser driver_lexer driver \
register prover whyconf
LIB_TRANSFORM = simplify_recursive_definition simplify_formula inlining \
split_conjunction encoding_decorate \
split_conjunction encoding_decorate encoding_decorate_mono \
eliminate_definition eliminate_algebraic \
eliminate_inductive eliminate_let eliminate_if \
explicit_polymorphism simple_types encoding_instantiate \
(* *)
(* Copyright (C) 2010- *)
(* Francois Bobot *)
(* Jean-Christophe Filliatre *)
(* Johannes Kanig *)
(* Andrei Paskevich *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2.1, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* *)
(* This is a copy of encoding_decorate, it should be merged to it
when it is done *)
open Util
open Ident
open Ty
open Term
open Task
open Theory
open Task
open Decl
let why_filename = ["transform" ; "encoding_decorate"]
let kept_tag = "encoding_decorate : kept"
(* From Encoding Polymorphism CADE07*)
type tenv = {query : Driver.driver_query option;
unsorted : ty;
sort : lsymbol;
trans_lsymbol : lsymbol Hls.t;
trans_tsymbol : lsymbol Hts.t}
let load_prelude query env =
let prelude = Env.find_theory env why_filename "Prelude_mono" in
let sort = Theory.ns_find_ls prelude.th_export ["sort"] in
let unsorted = ty_app (Theory.ns_find_ts prelude.th_export ["unsorted"]) []in
let int = Theory.ns_find_ls prelude.th_export ["int"]in
let task = None in
let task = Task.use_export task prelude in
let trans_tsymbol = Hts.create 17 in
Hts.add trans_tsymbol Ty.ts_int int;
{ query = query;
unsorted = unsorted;
sort = sort;
trans_lsymbol = Hls.create 17;
trans_tsymbol = trans_tsymbol}
let is_kept tenv ts =
ts.ts_args = [] &&
ts_equal ts ts_int || ts_equal ts ts_real (* for the constant *)
|| match tenv.query with
| None -> true (* every_simple *)
| Some query ->
let tags = Driver.query_tags query ts.ts_name in
Sstr.mem kept_tag tags
(* Translate a type to a term *)
let rec term_of_ty tenv tvar ty =
match ty.ty_node with
| Tyapp (ts,l) ->
let tts = Hts.find tenv.trans_tsymbol ts in
t_app tts ( (term_of_ty tenv tvar) l) tenv.unsorted
| Tyvar tv ->
t_var (try Htv.find tvar tv
with Not_found ->
(let var = create_vsymbol
(id_fresh ("tv"^tv.tv_name.id_string))
tenv.unsorted in
Htv.add tvar tv var;
let sort_app tenv tvar t ty =
let tty = term_of_ty tenv tvar ty in
t_app tenv.sort [tty;t] tenv.unsorted
(* Convert a type at the right of an arrow *)
let conv_ty_neg tenv _ty = tenv.unsorted
(* Convert a type at the left of an arrow *)
let conv_ty_pos tenv _ty = tenv.unsorted
(* Convert a logic symbols to the encoded one *)
let conv_ls tenv ls =
if ls_equal ls ps_equ
then ls
let tyl = (conv_ty_neg tenv) ls.ls_args in
let ty_res = Util.option_map (conv_ty_pos tenv) ls.ls_value in
if Util.option_eq ty_equal ty_res ls.ls_value
&& List.for_all2 ty_equal tyl ls.ls_args
then ls
let preid = id_clone ls.ls_name in
create_lsymbol preid tyl ty_res
let conv_ts tenv ts =
let preid = id_clone ts.ts_name in
let tyl = (fun _ -> tenv.unsorted) ts.ts_args in
create_fsymbol preid tyl tenv.unsorted
(* Convert the argument of a function from specials to deco or deco to
specials if needed*)
let conv_arg _tenv _tvar t _ty = t
(* Convert to undeco or to a specials an application *)
let conv_res_app tenv tvar p tl ty =
let tty = Util.of_option p.ls_value in
assert (ty_equal tty tenv.unsorted);
let t = t_app p tl tenv.unsorted in
sort_app tenv tvar t ty
let conv_vs tenv tvar (vsvar,acc) vs =
let tres,vsres =
let ty_res = conv_ty_pos tenv vs.vs_ty in
if ty_equal ty_res vs.vs_ty then
t_var vs,vs
let tty = term_of_ty tenv tvar vs.vs_ty in
let vsres = (create_vsymbol (id_clone vs.vs_name) ty_res) in
let t = t_var vsres in
t_app tenv.sort [tty;t] tenv.unsorted, vsres in
(Mvs.add vs tres vsvar,vsres::acc)
let conv_vs_let tenv vsvar vs =
let tres,vsres =
let ty_res = conv_ty_neg tenv vs.vs_ty in
if ty_equal ty_res vs.vs_ty then
t_var vs,vs
let vsres = (create_vsymbol (id_clone vs.vs_name) ty_res) in
let t = t_var vsres in
t, vsres in
(Mvs.add vs tres vsvar,vsres)
let rec rewrite_term tenv tvar vsvar t =
(*Format.eprintf "@[<hov 2>Term : %a =>@\n@?" Pretty.print_term t;*)
let fnT = rewrite_term tenv tvar in
let fnF = rewrite_fmla tenv tvar vsvar in
match t.t_node with
| Tconst _ -> t
| Tvar x -> Mvs.find x vsvar
| Tapp(p,tl) ->
let tl = (fnT vsvar) tl in
let p = Hls.find tenv.trans_lsymbol p in
let tl = List.map2 (conv_arg tenv tvar) tl p.ls_args in
conv_res_app tenv tvar p tl t.t_ty
| Tif (f, t1, t2) ->
t_if (fnF f) (fnT vsvar t1) (fnT vsvar t2)
| Tlet (t1, b) -> let u,t2 = t_open_bound b in
let (vsvar',u) = conv_vs_let tenv vsvar u in
let t1' = fnT vsvar t1 in let t2' = fnT vsvar' t2 in
if t_equal t1' t1 && t_equal t2' t2 then t else t_let u t1' t2'
| Tcase _ | Teps _ | Tbvar _ ->
Register.unsupportedTerm t
"Encoding decorate : I can't encode this term"
and rewrite_fmla tenv tvar vsvar f =
(* Format.eprintf "@[<hov 2>Fmla : %a =>@\n@?" Pretty.print_fmla f;*)
let fnT = rewrite_term tenv tvar vsvar in
let fnF = rewrite_fmla tenv tvar in
match f.f_node with
| Fapp(p, tl) when ls_equal p ps_equ ->
let tl = fnT tl in
let ty = tenv.unsorted in
let tl = List.map2 (conv_arg tenv tvar) tl [ty;ty] in
f_app p tl
| Fapp(p, tl) ->
let tl = fnT tl in
let p = Hls.find tenv.trans_lsymbol p in
let tl = List.map2 (conv_arg tenv tvar) tl p.ls_args in
f_app p tl
| Fquant (q, b) -> let vl, tl, f1 = f_open_quant b in
let (vsvar',vl) = List.fold_left (conv_vs tenv tvar) (vsvar,[]) vl in
let f1' = fnF vsvar' f1 in
(* Ici un trigger qui ne match pas assez de variables
peut tre gnr *)
let tl = tr_map (rewrite_term tenv tvar vsvar') (fnF vsvar') tl in
(*if f_equal f1' f1 && vsvar' == vsvar (*&& tr_equal tl' tl*) then f
else *)
let vl = List.rev vl in
f_quant q vl tl f1'
| Flet (t1, b) -> let u,f2 = f_open_bound b in
let (vsvar,u) = conv_vs_let tenv vsvar u in
let t1' = fnT t1 in let f2' = fnF vsvar f2 in
assert (u.vs_ty == t1'.t_ty);
(*if t_equal t1' t1 && f_equal f2' f2 then f else *)
f_let u t1' f2'
| _ -> f_map fnT (fnF vsvar) f
let decl (tenv:tenv) d =
(* let fnT = rewrite_term tenv in *)
let fnF = rewrite_fmla tenv in
match d.d_node with
| Dtype [ts,Tabstract] when ts_equal ts ts_int -> []
| Dtype [ts,Tabstract] ->
let tty =
Hts.find tenv.trans_tsymbol ts
with Not_found ->
let tty = conv_ts tenv ts in
Hts.add tenv.trans_tsymbol ts tty;
tty in
[create_decl (create_logic_decl [(tty,None)])]
| Dtype _ -> Register.unsupportedDecl
d "encoding_decorate : I can work only on abstract\
type which are not in recursive bloc."
| Dlogic l ->
let fn = function
| _ls, Some _ ->
d "encoding_decorate : I can't encode definition. \
Perhaps you could use eliminate_definition"
| ls, None ->
let ls = Hls.find tenv.trans_lsymbol ls in
with Not_found ->
let ls_conv = conv_ls tenv ls in
Hls.add tenv.trans_lsymbol ls ls_conv;
ls_conv,None in
[create_decl (create_logic_decl ( fn l))]
| Dind _ -> Register.unsupportedDecl
d "encoding_decorate : I can't work on inductive"
(* let fn (pr,f) = pr, fnF f in *)
(* let fn (ps,l) = ps, fn l in *)
(* [create_ind_decl ( fn l)] *)
| Dprop (k,pr,f) ->
let tvar = Htv.create 17 in
let f = fnF tvar Mvs.empty f in
let tvl = Htv.fold (fun _ tv acc -> tv::acc) tvar [] in
let f = f_forall tvl [] f in
[create_decl (create_prop_decl k pr f)]
let decl tenv d =
Format.eprintf "@[<hov 2>Decl : %a =>@\n@?" Pretty.print_decl d;
let res = decl tenv d in
Format.eprintf "%a@]@." (Pp.print_list Pp.newline Pretty.print_task_tdecl)
let t = Register.store_query
(fun query ->
let env = Driver.query_env query in
let init_task,tenv = load_prelude (Some query) env in
Trans.tdecl (decl tenv) init_task)
let () = Register.register_transform "encoding_decorate_mono" t
......@@ -20,3 +20,10 @@ theory Kept
(* If a driver tags this type by "encoding decorate : kept", all the type which clone this one will be kept by the encoding*)
type t
theory Prelude_mono
logic sort int int : int
logic int : int
axiom Conv_int : forall x1 x2 : int. sort int x1 = sort int x2 <-> x1 = x2
Markdown is supported
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment