Commit cab293f6 by MARCHE Claude

### reorg doc

parent 703e0c3d
 ... ... @@ -121,9 +121,11 @@ Johannes Kanig, St\'ephane Lescuyer, Sim\~ao Melo de Sousa. \part{Tutorial} \input{starting.tex} \input{syntax.tex} \input{ide.tex} % \input{ide.tex} % \input{whyml.tex} ... ...
doc/starting.tex 0 → 100644
 \chapter{Getting Started} \label{chap:started} \section{Hello Proof} The graphical interface allows to browse into a file or a set of files, and check the validity of goals with external provers, in a friendly way. This section presents the basic use of this GUI. Please refer to Section~\ref{sec:ideref} for a more complete description. %%% Local Variables: %%% mode: latex %%% TeX-PDF-mode: t %%% TeX-master: "manual" %%% End:
 ... ... @@ -4,7 +4,7 @@ The classical example of the Scottish private club puzzle The club follows six rules: - every non-scottish members wear red socks - every non-scottish members wear red socks - every member wears a kilt or doesn't wear socks ... ... @@ -22,25 +22,25 @@ Problem: prove that there is nobody in this club ! theory ScottishClubProblem "the Scottish private club puzzle" logic is_scottish logic wears_red_socks logic wears_kilt logic is_married logic goes_out_on_sunday logic is_scottish logic wears_red_socks logic wears_kilt logic is_married logic goes_out_on_sunday axiom R1: not is_scottish -> wears_red_socks axiom R1: not is_scottish -> wears_red_socks axiom R2: wears_kilt or not wears_red_socks axiom R2: wears_kilt or not wears_red_socks axiom R3: is_married -> not goes_out_on_sunday axiom R3: is_married -> not goes_out_on_sunday axiom R4: goes_out_on_sunday <-> is_scottish axiom R4: goes_out_on_sunday <-> is_scottish axiom R5: wears_kilt -> is_scottish and is_married axiom R5: wears_kilt -> is_scottish and is_married axiom R6: is_scottish -> wears_kilt axiom R6: is_scottish -> wears_kilt goal ThereIsNobodyInTheClub: false goal ThereIsNobodyInTheClub: false end
 theory TestProp goal Test0 : true goal Test0_5 : true -> false logic a logic b ... ... @@ -12,10 +16,6 @@ theory TestInt use import int.Int goal Test0 : true goal Test0_5 : true -> false goal Test1: 2+2 = 4 goal Test2: forall x:int. x*x >= 0 ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!