edit_distance: intermediate lemmas

to be proved with Coq, later
to do that, it would be nice to have recursive definitions translated to Coq
as such when possible
parent 9f201f2b
......@@ -39,6 +39,59 @@ theory Word
predicate min_dist (w1 w2: word) (n: int) =
dist w1 w2 n /\ forall m: int. dist w1 w2 m -> n <= m
(* intermediate lemmas *)
(* TODO: prove the following lemmas in Coq (proofs are in Why2
repository, in examples/edit-distance/words.v)
It would be really helpful to have recursive definitions output
as such in Coq when possible *)
(***
use export list.Append
function last_char (a: char) (u: word) : char = match u with
| Nil -> a
| Cons c u' -> last_char c u'
end
function but_last (a: char) (u: word) : word = match u with
| Nil -> Nil
| Cons c u' -> Cons a (but_last c u')
end
lemma first_last_explicit:
forall u: word, a: char.
but_last a u ++ Cons (last_char a u) Nil = Cons a u
lemma first_last:
forall a: char, u: word. exists v: word, b: char.
v ++ Cons b Nil = Cons a u /\ length v = length u
lemma key_lemma_right:
forall w1 w'2: word, m: int, a: char.
dist w1 w'2 m ->
forall w2: word. w'2 = Cons a w2 ->
exists u1 v1: word, k: int.
w1 = u1 ++ v1 /\ dist v1 w2 k /\ k + length u1 <= m + 1
lemma dist_symetry:
forall w1 w2: word, n: int. dist w1 w2 n -> dist w2 w1 n
lemma key_lemma_left:
forall w1 w2: word, m: int, a: char.
dist (Cons a w1) w2 m ->
exists u2 v2: word, k: int.
w2 = u2 ++ v2 /\ dist w1 v2 k /\ k + length u2 <= m + 1
lemma dist_concat_left:
forall u v w: word, n: int.
dist v w n -> dist (u ++ v) w (length u + n)
lemma dist_concat_right:
forall u v w: word, n: int.
dist v w n -> dist v (u ++ w) (length u + n)
***)
(* end of intermediate lemmas *)
lemma min_dist_equal:
forall w1 w2: word, a: char, n: int.
min_dist w1 w2 n -> min_dist (Cons a w1) (Cons a w2) n
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment