Commit c5e4ff67 by Mário Pereira

### Added new lemmas to seq theory: permut_refl, permut_sym, permut_all_mem

parent d60cd62f
 ... @@ -328,8 +328,14 @@ theory Permut ... @@ -328,8 +328,14 @@ theory Permut (** {2 Lemmas about permut} *) (** {2 Lemmas about permut} *) lemma permut_refl: forall s: seq 'a, l u: int. permut s s l u lemma permut_sym: forall s1 s2: seq 'a, l u: int. permut s1 s2 l u -> permut s2 s1 l u lemma permut_trans: lemma permut_trans: forall s1 s2 s3: seq 'a. forall l u: int. forall s1 s2 s3: seq 'a, l u: int. permut s1 s2 l u -> permut s2 s3 l u -> permut s1 s3 l u permut s1 s2 l u -> permut s2 s3 l u -> permut s1 s3 l u lemma permut_exists: lemma permut_exists: ... @@ -339,6 +345,11 @@ theory Permut ... @@ -339,6 +345,11 @@ theory Permut (** {2 Lemmas about permut_all} *) (** {2 Lemmas about permut_all} *) use import Mem lemma permut_all_mem: forall s1 s2: seq 'a. permut_all s1 s2 -> forall x. mem x s1 <-> mem x s2 lemma exchange_permut_all: lemma exchange_permut_all: forall s1 s2: seq 'a, i j: int. forall s1 s2: seq 'a, i j: int. exchange s1 s2 i j -> permut_all s1 s2 exchange s1 s2 i j -> permut_all s1 s2 ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment