Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Why3
why3
Commits
c0c54f6b
Commit
c0c54f6b
authored
Jan 11, 2013
by
Andrei Paskevich
Browse files
slightly generalized Tower of Hanoi (two Coq lemmas not proved yet)
parent
3b6e790c
Changes
2
Expand all
Hide whitespace changes
Inline
Side-by-side
examples/programs/tower_of_hanoi.mlw
View file @
c0c54f6b
...
@@ -57,6 +57,79 @@ module Hanoi
...
@@ -57,6 +57,79 @@ module Hanoi
end
end
module Tower_of_Hanoi
use import int.Int
use import list.List
use import list.Length
clone list.Sorted as S with type t = int, predicate le = (<)
clone list.Sorted as R with type t = int, predicate le = (>)
type tower = {
mutable rod : list int;
} invariant {
S.sorted self.rod
}
let move (a b: tower) (ghost x: int) (ghost s: list int)
requires { a.rod = Cons x s }
requires { match b.rod with Nil -> true | Cons y _ -> x < y end }
ensures { a.rod = s }
ensures { b.rod = Cons x (old b.rod) }
= match a.rod with
| Cons x r ->
a.rod <- r;
b.rod <- Cons x b.rod
| Nil -> absurd
end
predicate compat (s t: list int) =
match s, t with
| Cons x _, Cons y _ -> x < y
| _, _ -> true
end
function rev_append (s t: list int) : list int =
match s with
| Cons x r -> rev_append r (Cons x t)
| Nil -> t
end
let rec hanoi_rec (a b c: tower) (n: int) (ghost p s: list int)
requires { length p = n /\ R.sorted p }
requires { a.rod = rev_append p s }
requires { compat p b.rod }
requires { compat p c.rod }
variant { n }
ensures { a.rod = s }
ensures { b.rod = rev_append p (old b.rod) }
ensures { c.rod = old c.rod }
= if n > 0 then begin
let ghost t = c.rod in
let ghost x = match p with Cons x _ -> x | Nil -> absurd end in
let ghost r = match p with Cons _ r -> r | Nil -> absurd end in
hanoi_rec a c b (n-1) r (Cons x s);
move a b x s;
hanoi_rec c b a (n-1) r t
end
use import list.Reverse
lemma rev_sorted:
forall s: list int. S.sorted s -> R.sorted (reverse s)
lemma rev_append_rev:
forall s: list int. s = rev_append (reverse s) Nil
let tower_of_hanoi (a b c: tower)
requires { b.rod = c.rod = Nil }
ensures { b.rod = old a.rod }
ensures { a.rod = c.rod = Nil }
= hanoi_rec a b c (length a.rod) (ghost reverse a.rod) Nil
end
(* a stack of disks is modeled as a sorted list of integers *)
(* a stack of disks is modeled as a sorted list of integers *)
module Disks
module Disks
...
...
examples/programs/tower_of_hanoi/why3session.xml
View file @
c0c54f6b
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment