 ### Add lemmas to go from finite floating-point results to finite inputs.

```When proving a program that does not allow for exceptional behaviors, the
context is littered with finiteness facts (due to operator preconditions),
so these lemmas help some provers by reducing the amount of instantiations
needed to produce the problem on real numbers.

This patch also adds an axiom so that is_finite, is_infinite, and is_nan
are actually disjoint. It also modifies the axiom about sqrt so that its
precondition is expressed on real numbers directly.```
parent e1da6626
 ... ... @@ -136,7 +136,10 @@ theory GenericFloat predicate is_minus_zero (x:t) = is_zero x /\ is_negative x predicate is_not_nan (x:t) = is_finite x \/ is_infinite x lemma is_not_nan: forall x:t. is_not_nan x <-> not (is_nan x) axiom is_not_nan: forall x:t. is_not_nan x <-> not (is_nan x) axiom is_not_finite: forall x:t. not (is_finite x) <-> (is_infinite x \/ is_nan x) (* {3 Conversions from other sorts} *) ... ... @@ -396,33 +399,64 @@ theory GenericFloat is_finite (add m x y) /\ to_real (add m x y) = round m (to_real x +. to_real y) lemma add_finite_rev: forall m:mode, x y:t [add m x y]. is_finite (add m x y) -> is_finite x /\ is_finite y /\ no_overflow m (to_real x +. to_real y) /\ to_real (add m x y) = round m (to_real x +. to_real y) axiom sub_finite: forall m:mode, x y:t [sub m x y]. is_finite x -> is_finite y -> no_overflow m (to_real x -. to_real y) -> is_finite (sub m x y) /\ to_real (sub m x y) = round m (to_real x -. to_real y) lemma sub_finite_rev: forall m:mode, x y:t [sub m x y]. is_finite (sub m x y) -> is_finite x /\ is_finite y /\ no_overflow m (to_real x -. to_real y) /\ to_real (sub m x y) = round m (to_real x -. to_real y) axiom mul_finite: forall m:mode, x y:t [mul m x y]. is_finite x -> is_finite y -> no_overflow m (to_real x *. to_real y) -> is_finite (mul m x y) /\ to_real (mul m x y) = round m (to_real x *. to_real y) lemma mul_finite_rev: forall m:mode, x y:t [mul m x y]. is_finite (mul m x y) -> is_finite x /\ is_finite y /\ no_overflow m (to_real x *. to_real y) /\ to_real (mul m x y) = round m (to_real x *. to_real y) axiom div_finite: forall m:mode, x y:t [div m x y]. is_finite x -> is_finite y -> not is_zero y -> no_overflow m (to_real x /. to_real y) -> is_finite (div m x y) /\ to_real (div m x y) = round m (to_real x /. to_real y) lemma div_finite_rev: forall m:mode, x y:t [div m x y]. is_finite (div m x y) -> (is_finite x /\ is_finite y /\ no_overflow m (to_real x /. to_real y) /\ not is_zero y /\ to_real (div m x y) = round m (to_real x /. to_real y)) \/ (is_finite x /\ is_infinite y /\ to_real (div m x y) = 0.) axiom neg_finite: forall x:t [neg x]. is_finite x -> is_finite (neg x) /\ to_real (neg x) = -. to_real x lemma neg_finite_rev: forall x:t [neg x]. is_finite (neg x) -> is_finite x /\ to_real (neg x) = -. to_real x axiom abs_finite: forall x:t [abs x]. is_finite x -> is_finite (abs x) /\ to_real (abs x) = Abs.abs (to_real x) /\ is_positive (abs x) lemma abs_finite_rev: forall x:t [abs x]. is_finite (abs x) -> is_finite x /\ to_real (abs x) = Abs.abs (to_real x) axiom abs_universal : forall x:t [abs x]. not (is_negative (abs x)) axiom fma_finite: forall m:mode, x y z:t [fma m x y z]. ... ... @@ -431,15 +465,26 @@ theory GenericFloat is_finite (fma m x y z) /\ to_real (fma m x y z) = round m (to_real x *. to_real y +. to_real z) lemma fma_finite_rev: forall m:mode, x y z:t [fma m x y z]. is_finite (fma m x y z) -> is_finite x /\ is_finite y /\ is_finite z /\ no_overflow m (to_real x *. to_real y +. to_real z) /\ to_real (fma m x y z) = round m (to_real x *. to_real y +. to_real z) (* /!\ externalize square root? more generally, externalize any part that needs another theory ? /!\ *) use real.Square axiom sqrt_finite: forall m:mode, x:t [sqrt m x]. is_finite x -> x .>= zeroF -> is_finite x -> to_real x >=. 0. -> is_finite (sqrt m x) /\ to_real (sqrt m x) = round m (Square.sqrt (to_real x)) lemma sqrt_finite_rev: forall m:mode, x:t [sqrt m x]. is_finite (sqrt m x) -> is_finite x /\ to_real x >=. 0. /\ to_real (sqrt m x) = round m (Square.sqrt (to_real x)) predicate same_sign_real (x:t) (r:real) = (is_positive x /\ r >. 0.0) \/ (is_negative x /\ r <. 0.0) ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!