Commit 87923af7 authored by Andrei Paskevich's avatar Andrei Paskevich Committed by François Bobot
Browse files

whitespace

parent 1af04b98
......@@ -28,15 +28,16 @@ module Map : sig
module type OrderedType =
sig
type t
(** The type of the map keys. *)
(** The type of the map keys. *)
val compare : t -> t -> int
(** A total ordering function over the keys.
This is a two-argument function [f] such that
[f e1 e2] is zero if the keys [e1] and [e2] are equal,
[f e1 e2] is strictly negative if [e1] is smaller than [e2],
and [f e1 e2] is strictly positive if [e1] is greater than [e2].
Example: a suitable ordering function is the generic structural
comparison function {!Pervasives.compare}. *)
(** A total ordering function over the keys.
This is a two-argument function [f] such that
[f e1 e2] is zero if the keys [e1] and [e2] are equal,
[f e1 e2] is strictly negative if [e1] is smaller than [e2],
and [f e1 e2] is strictly positive if [e1] is greater than [e2].
Example: a suitable ordering function is the generic structural
comparison function {!Pervasives.compare}. *)
end
(** Input signature of the functor {!Map.Make}. *)
......@@ -56,30 +57,28 @@ module type S =
val mem: key -> 'a t -> bool
(** [mem x m] returns [true] if [m] contains a binding for [x],
and [false] otherwise. *)
and [false] otherwise. *)
val add: key -> 'a -> 'a t -> 'a t
(** [add x y m] returns a map containing the same bindings as
[m], plus a binding of [x] to [y]. If [x] was already bound
in [m], its previous binding disappears. *)
[m], plus a binding of [x] to [y]. If [x] was already bound
in [m], its previous binding disappears. *)
val singleton: key -> 'a -> 'a t
(** [singleton x y] returns the one-element map that contains a binding [y]
for [x].
@since 3.12.0
*)
@since 3.12.0 *)
val remove: key -> 'a t -> 'a t
(** [remove x m] returns a map containing the same bindings as
[m], except for [x] which is unbound in the returned map. *)
[m], except for [x] which is unbound in the returned map. *)
val merge:
(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
(** [merge f m1 m2] computes a map whose keys is a subset of keys of [m1]
and of [m2]. The presence of each such binding, and the corresponding
value, is determined with the function [f].
@since 3.12.0
*)
@since 3.12.0 *)
val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
(** Total ordering between maps. The first argument is a total ordering
......@@ -87,9 +86,9 @@ module type S =
val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
(** [equal cmp m1 m2] tests whether the maps [m1] and [m2] are
equal, that is, contain equal keys and associate them with
equal data. [cmp] is the equality predicate used to compare
the data associated with the keys. *)
equal, that is, contain equal keys and associate them with
equal data. [cmp] is the equality predicate used to compare
the data associated with the keys. *)
val iter: (key -> 'a -> unit) -> 'a t -> unit
(** [iter f m] applies [f] to all bindings in map [m].
......@@ -98,68 +97,59 @@ module type S =
order with respect to the ordering over the type of the keys. *)
val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
(** [fold f m a] computes [(f kN dN ... (f k1 d1 a)...)],
where [k1 ... kN] are the keys of all bindings in [m]
(in increasing order), and [d1 ... dN] are the associated data. *)
(** [fold f m a] computes [(f kN dN ... (f k1 d1 a)...)], where
[k1 ... kN] are the keys of all bindings in [m] (in increasing
order), and [d1 ... dN] are the associated data. *)
val for_all: (key -> 'a -> bool) -> 'a t -> bool
(** [for_all p m] checks if all the bindings of the map
satisfy the predicate [p].
@since 3.12.0
*)
@since 3.12.0 *)
val exists: (key -> 'a -> bool) -> 'a t -> bool
(** [exists p m] checks if at least one binding of the map
satisfy the predicate [p].
@since 3.12.0
*)
@since 3.12.0 *)
val filter: (key -> 'a -> bool) -> 'a t -> 'a t
(** [filter p m] returns the map with all the bindings in [m]
that satisfy predicate [p].
@since 3.12.0
*)
@since 3.12.0 *)
val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
(** [partition p m] returns a pair of maps [(m1, m2)], where
[m1] contains all the bindings of [s] that satisfy the
predicate [p], and [m2] is the map with all the bindings of
[s] that do not satisfy [p].
@since 3.12.0
*)
@since 3.12.0 *)
val cardinal: 'a t -> int
(** Return the number of bindings of a map.
@since 3.12.0
*)
@since 3.12.0 *)
val bindings: 'a t -> (key * 'a) list
(** Return the list of all bindings of the given map.
The returned list is sorted in increasing order with respect
to the ordering [Ord.compare], where [Ord] is the argument
given to {!Map.Make}.
@since 3.12.0
*)
The returned list is sorted in increasing order with respect
to the ordering [Ord.compare], where [Ord] is the argument
given to {!Map.Make}.
@since 3.12.0 *)
val min_binding: 'a t -> (key * 'a)
(** Return the smallest binding of the given map
(with respect to the [Ord.compare] ordering), or raise
[Not_found] if the map is empty.
@since 3.12.0
*)
(with respect to the [Ord.compare] ordering), or raise
[Not_found] if the map is empty.
@since 3.12.0 *)
val max_binding: 'a t -> (key * 'a)
(** Same as {!Map.S.max_binding}, but returns the largest binding
of the given map.
@since 3.12.0
*)
(** Same as {!Map.S.max_binding}, but returns the largest
binding of the given map.
@since 3.12.0 *)
val choose: 'a t -> (key * 'a)
(** Return one binding of the given map, or raise [Not_found] if
the map is empty. Which binding is chosen is unspecified,
but equal bindings will be chosen for equal maps.
@since 3.12.0
*)
the map is empty. Which binding is chosen is unspecified,
but equal bindings will be chosen for equal maps.
@since 3.12.0 *)
val split: key -> 'a t -> 'a t * 'a option * 'a t
(** [split x m] returns a triple [(l, data, r)], where
......@@ -169,23 +159,22 @@ module type S =
is strictly greater than [x];
[data] is [None] if [m] contains no binding for [x],
or [Some v] if [m] binds [v] to [x].
@since 3.12.0
*)
@since 3.12.0 *)
val find: key -> 'a t -> 'a
(** [find x m] returns the current binding of [x] in [m],
or raises [Not_found] if no such binding exists. *)
or raises [Not_found] if no such binding exists. *)
val map: ('a -> 'b) -> 'a t -> 'b t
(** [map f m] returns a map with same domain as [m], where the
associated value [a] of all bindings of [m] has been
replaced by the result of the application of [f] to [a].
The bindings are passed to [f] in increasing order
with respect to the ordering over the type of the keys. *)
(** [map f m] returns a map with same domain as [m], where
the associated value [a] of all bindings of [m] has been
replaced by the result of the application of [f] to [a].
The bindings are passed to [f] in increasing order
with respect to the ordering over the type of the keys. *)
val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
(** Same as {!Map.S.map}, but the function receives as arguments both the
key and the associated value for each binding of the map. *)
(** Same as {!Map.S.map}, but the function receives as arguments both
the key and the associated value for each binding of the map. *)
(** {3} Added into why stdlib version *)
......@@ -197,20 +186,17 @@ module type S =
binding of [x] becomes [f None].
[change x f m] corresponds to a more efficient way to do
[add x (try f (Some (find x m)) with Not_found -> f None) m]
*)
[add x (try f (Some (find x m)) with Not_found -> f None) m] *)
val union : (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
(** [union f m1 m2] computes a map whose keys is a subset of keys of [m1]
and of [m2]. If a binding is present in [m1] (resp. [m2]) and not in
[m2] (resp. [m1]) the same binding is present in the result. Indeed the
function [f] is called only in ambiguous cases.
*)
(** [union f m1 m2] computes a map whose keys is a subset of keys
of [m1] and of [m2]. If a binding is present in [m1] (resp. [m2])
and not in [m2] (resp. [m1]) the same binding is present in
the result. The function [f] is called only in ambiguous cases. *)
val inter : (key -> 'a -> 'b -> 'c option) -> 'a t -> 'b t -> 'c t
(** [inter f m1 m2] computes a map whose keys is a subset of
the intersection of keys of [m1] and of [m2].
*)
the intersection of keys of [m1] and of [m2]. *)
val diff : (key -> 'a -> 'b -> 'a option) -> 'a t -> 'b t -> 'a t
(** [diff f m1 m2] computes a map whose keys is a subset of keys
......@@ -219,8 +205,8 @@ module type S =
otherwise [Some d1] is returned, the key binds to [d1] in [m1] *)
val submap : (key -> 'a -> 'b -> bool) -> 'a t -> 'b t -> bool
(** [submap pr m1 m2] verifies that all the keys in m1 are in m2
and that for each such binding pr is verified. *)
(** [submap pr m1 m2] verifies that all the keys in m1 are in m2
and that for each such binding pr is verified. *)
val find_default : key -> 'a -> 'a t -> 'a
(** [find_default x d m] returns the current binding of [x] in [m],
......@@ -247,114 +233,113 @@ module type S =
(** The type of sets of type [elt]. *)
val empty: t
(** The empty set. *)
(** The empty set. *)
val is_empty: t -> bool
(** Test whether a set is empty or not. *)
(** Test whether a set is empty or not. *)
val mem: elt -> t -> bool
(** [mem x s] returns [true] if [s] contains [x],
and [false] otherwise. *)
(** [mem x s] returns [true] if [s] contains [x],
and [false] otherwise. *)
val add: elt -> t -> t
(** [add x s] returns a set containing the same elements as
[s], plus [x]. *)
(** [add x s] returns a set containing the same elements as
[s], plus [x]. *)
val singleton: elt -> t
(** [singleton x] returns the one-element set that contains [x]. *)
(** [singleton x] returns the one-element set that contains [x]. *)
val remove: elt -> t -> t
(** [remove x s] returns a set containing the same elements as [s],
except for [x]. *)
(** [remove x s] returns a set containing the same elements as [s],
except for [x]. *)
val merge: (elt -> bool -> bool -> bool) -> t -> t -> t
(** [merge f s1 s2] computes a set whose elts is a subset of elts
of [s1] and of [s2]. The presence of each such element is
determined with the function [f]. *)
(** [merge f s1 s2] computes a set whose elts is a subset of elts
of [s1] and of [s2]. The presence of each such element is
determined with the function [f]. *)
val compare: t -> t -> int
(** Total ordering between sets. *)
(** Total ordering between sets. *)
val equal: t -> t -> bool
(** [equal s1 s2] tests whether the sets [s1] and [s2] are equal. *)
(** [equal s1 s2] tests whether the sets [s1] and [s2] are equal. *)
val subset: t -> t -> bool
(** [subset s1 s2] tests whether the set [s1] is a subset of [s2]. *)
(** [subset s1 s2] tests whether the set [s1] is a subset of [s2]. *)
val iter: (elt -> unit) -> t -> unit
(** [iter f s] applies [f] to all elements of [s].
The elements are passed to [f] in increasing order with respect
to the ordering over the type of the elts. *)
(** [iter f s] applies [f] to all elements of [s].
The elements are passed to [f] in increasing order with respect
to the ordering over the type of the elts. *)
val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a
(** [fold f s a] computes [(f eN ... (f e1 a)...)],
where [e1 ... eN] are the element of [s] in increasing order. *)
(** [fold f s a] computes [(f eN ... (f e1 a)...)],
where [e1 ... eN] are the element of [s] in increasing order. *)
val for_all: (elt -> bool) -> t -> bool
(** [for_all p s] checks if all the elements of [s] satisfy
the predicate [p]. *)
(** [for_all p s] checks if all the elements of [s] satisfy
the predicate [p]. *)
val exists: (elt -> bool) -> t -> bool
(** [exists p s] checks if at least one element of [s] satisfies
the predicate [p]. *)
(** [exists p s] checks if at least one element of [s] satisfies
the predicate [p]. *)
val filter: (elt -> bool) -> t -> t
(** [filter p s] returns the set with all the elements of [s]
that satisfy predicate [p]. *)
(** [filter p s] returns the set with all the elements of [s]
that satisfy predicate [p]. *)
val partition: (elt -> bool) -> t -> t * t
(** [partition p s] returns a pair of sets [(s1, s2)], where
[s1] contains all the elements of [s] that satisfy the
predicate [p], and [s2] is the map with all the elements of
[s] that do not satisfy [p]. *)
(** [partition p s] returns a pair of sets [(s1, s2)], where
[s1] contains all the elements of [s] that satisfy the
predicate [p], and [s2] is the map with all the elements
of [s] that do not satisfy [p]. *)
val cardinal: t -> int
(** Return the number of elements in a set. *)
(** Return the number of elements in a set. *)
val elements: t -> elt list
(** Return the list of all elements of the given set.
The returned list is sorted in increasing order. *)
(** Return the list of all elements of the given set.
The returned list is sorted in increasing order. *)
val min_elt: t -> elt
(** Return the smallest element of the given set or raise
[Not_found] if the set is empty. *)
(** Return the smallest element of the given set or raise
[Not_found] if the set is empty. *)
val max_elt: t -> elt
(** Return the largest element of the given set or raise
[Not_found] if the set is empty. *)
(** Return the largest element of the given set or raise
[Not_found] if the set is empty. *)
val choose: t -> elt
(** Return one element of the given set, or raise [Not_found] if
the set is empty. Which element is chosen is unspecified,
but equal elements will be chosen for equal sets. *)
(** Return one element of the given set, or raise [Not_found] if
the set is empty. Which element is chosen is unspecified,
but equal elements will be chosen for equal sets. *)
val split: elt -> t -> t * bool * t
(** [split x s] returns a triple [(l, mem, r)], where
[l] is the set with all the elements of [s] that are
strictly less than [x];
[r] is the set with all the elements of [s] that are
strictly greater than [x];
[mem] is [true] if [x] belongs to [s] and [false] otherwise. *)
(** [split x s] returns a triple [(l, mem, r)], where
[l] is the set with all the elements of [s] that are
strictly less than [x];
[r] is the set with all the elements of [s] that are
strictly greater than [x];
[mem] is [true] if [x] belongs to [s] and [false] otherwise. *)
val change : elt -> (bool -> bool) -> t -> t
(** [change x f s] returns a set containing the same elements as
[s], except [x] which is added to [s] if [f (mem x s)] returns
[true] and removed otherwise. *)
(** [change x f s] returns a set containing the same elements as
[s], except [x] which is added to [s] if [f (mem x s)] returns
[true] and removed otherwise. *)
val union : t -> t -> t
(** [union f s1 s2] computes the union of two sets *)
(** [union f s1 s2] computes the union of two sets *)
val inter : t -> t -> t
(** [inter f s1 s2] computes the intersection of two sets *)
(** [inter f s1 s2] computes the intersection of two sets *)
val diff : t -> t -> t
(** [diss f s1 s2] computes the difference of two sets *)
(** [diss f s1 s2] computes the difference of two sets *)
val translate : (elt -> elt) -> t -> t
(** [translate f s] translates the elements in the set [s] by the
function [f]. [f] must be strictly monotone on the elements of [s].
Otherwise it raises invalid_arg *)
(** [translate f s] translates the elements in the set [s] by the
function [f]. [f] must be strictly monotone on the elements of [s].
Otherwise it raises invalid_arg *)
end
module Set : Set
......@@ -365,6 +350,6 @@ module type S =
module Make (Ord : OrderedType) : S with type key = Ord.t
(** Functor building an implementation of the map/set structure
given a totally ordered type. *)
given a totally ordered type. *)
end
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment