Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
why3
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
126
Issues
126
List
Boards
Labels
Service Desk
Milestones
Merge Requests
16
Merge Requests
16
Operations
Operations
Incidents
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Why3
why3
Commits
80f4339b
Commit
80f4339b
authored
Jul 08, 2015
by
Jean-Christophe Filliâtre
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
theory set.FsetSum rewritten using higher-order
parent
6def0492
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
23 additions
and
24 deletions
+23
-24
theories/set.why
theories/set.why
+23
-24
No files found.
theories/set.why
View file @
80f4339b
...
...
@@ -160,6 +160,10 @@ theory Fset
axiom cardinal_subset:
forall s1 s2 : set 'a. subset s1 s2 -> cardinal s1 <= cardinal s2
lemma subset_eq:
forall s1 s2 : set 'a.
subset s1 s2 -> cardinal s1 = cardinal s2 -> s1 == s2
lemma cardinal1:
forall s: set 'a. cardinal s = 1 ->
forall x: 'a. mem x s -> x = choose s
...
...
@@ -292,44 +296,39 @@ theory Min
end
(** sum on finite set *)
theory FsetSum "Sum of
the elements of a container limited to a finite set of keys
"
theory FsetSum "Sum of
a function over a finite set
"
use import HighOrd
use import int.Int
use import Fset as S
type key
type container
function f container key : int
(** [f c k] is the element associated to k in the container [c] *)
function sum container (set key) : int
(** [sum c s] is the sum Sum_{S.mem k s} f c k *)
function sum (set 'a) ('a -> int) : int
(** [sum s f] is the sum Sum_{S.mem x s} f x *)
axiom Sum_def_empty :
forall
c : container. sum c S.empty
= 0
forall
f. sum (S.empty: set 'a) f
= 0
axiom Sum_add:
forall
c : container, s : set key, k: key
.
not (mem
k s) -> sum c (S.add k s) = sum c s + f c k
forall
s: set 'a. forall f x
.
not (mem
x s) -> sum (S.add x s) f = sum s f + f x
lemma Sum_remove:
forall
c : container, s : set key, k: key
.
mem
k s -> sum c (S.remove k s) = sum c s - f c k
forall
s: set 'a. forall f x
.
mem
x s -> sum (S.remove x s) f = sum s f - f x
lemma Sum_def_choose
:
forall
c: container, s:set key
.
lemma Sum_def_choose:
forall
s: set 'a. forall f
.
not (S.is_empty s) ->
let k
= S.choose s in
sum c s = f c k + sum c (S.remove k s)
let x
= S.choose s in
sum s f = f x + sum (S.remove x s) f
lemma Sum_transitivity
:
forall
c : container, s1 s2 : set key
.
sum
c (S.union s1 s2) = sum c s1 + sum c s2 - sum c (S.inter s1 s2)
lemma Sum_transitivity:
forall
s1 s2: set 'a. forall f
.
sum
(S.union s1 s2) f = sum s1 f + sum s2 f - sum (S.inter s1 s2) f
lemma Sum_eq
:
forall
c1 c2 : container, s : set key
.
(forall
k : key. S.mem k s -> f c1 k = f c2 k) -> sum c1 s = sum c2 s
lemma Sum_eq:
forall
s: set 'a. forall f g
.
(forall
x. S.mem x s -> f x = g x) -> sum s f = sum s g
end
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment