Maj terminée. Pour consulter la release notes associée voici le lien :
https://about.gitlab.com/releases/2021/07/07/critical-security-release-gitlab-14-0-4-released/

Commit 7b2226a8 authored by Guillaume Melquiond's avatar Guillaume Melquiond
Browse files

Remove useless hypotheses from Max_sym and Min_sym.

From Max_is_some and Max_is_ge, one can prove that ge is a total relation.
So the consequents hold even if "ge x y" does not (since "ge y x" then
holds by totality).
parent dfda5336
......@@ -73,16 +73,14 @@ exact Zmin_r.
Qed.
(* Why3 goal *)
Lemma Max_sym : forall (x:Z) (y:Z), (y <= x)%Z ->
Lemma Max_sym : forall (x:Z) (y:Z),
((ZArith.BinInt.Z.max x y) = (ZArith.BinInt.Z.max y x)).
intros x y _.
apply Zmax_comm.
exact Zmax_comm.
Qed.
(* Why3 goal *)
Lemma Min_sym : forall (x:Z) (y:Z), (y <= x)%Z ->
Lemma Min_sym : forall (x:Z) (y:Z),
((ZArith.BinInt.Z.min x y) = (ZArith.BinInt.Z.min y x)).
intros x y _.
apply Zmin_comm.
exact Zmin_comm.
Qed.
......@@ -42,8 +42,8 @@ theory MinMax
axiom Min_x : forall x y:t. ge y x -> min x y = x
axiom Min_y : forall x y:t. ge x y -> min x y = y
lemma Max_sym: forall x y:t. ge x y -> max x y = max y x
lemma Min_sym: forall x y:t. ge x y -> min x y = min y x
lemma Max_sym: forall x y:t. max x y = max y x
lemma Min_sym: forall x y:t. min x y = min y x
(***
function min (x y : t) : t
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment