Commit 722d4afe authored by MARCHE Claude's avatar MARCHE Claude

small modifs in example linked list reverse

parent b3d3c6ba
......@@ -60,7 +60,7 @@ module InPlaceRev
lemma list_seg_sublistl:
forall next:map loc loc, l1 l2:list loc, p q: loc.
list_seg p next (l1++Cons q l2) null ->
list_seg p next (l1++Cons q l2) null ->
list_seg q next (Cons q l2) null
lemma list_seg_no_repet:
......@@ -94,7 +94,7 @@ module InPlaceRev
pM := tail !pM
done;
!r
{ list_seg result !next (reverse lM) null }
{ list_seg result !next (reverse lM) null }
end
......
......@@ -77,7 +77,7 @@ Axiom Append_assoc : forall (a:Type), forall (l1:(list a)) (l2:(list a))
l3)) = (infix_plpl (infix_plpl l1 l2) l3)).
Axiom Append_l_nil : forall (a:Type), forall (l:(list a)), ((infix_plpl l
(Nil:(list a))) = l).
(Nil :(list a))) = l).
Set Implicit Arguments.
Fixpoint length (a:Type)(l:(list a)) {struct l}: Z :=
......@@ -91,7 +91,7 @@ Axiom Length_nonnegative : forall (a:Type), forall (l:(list a)),
(0%Z <= (length l))%Z.
Axiom Length_nil : forall (a:Type), forall (l:(list a)),
((length l) = 0%Z) <-> (l = (Nil:(list a))).
((length l) = 0%Z) <-> (l = (Nil :(list a))).
Axiom Append_length : forall (a:Type), forall (l1:(list a)) (l2:(list a)),
((length (infix_plpl l1 l2)) = ((length l1) + (length l2))%Z).
......@@ -105,8 +105,8 @@ Axiom mem_decomp : forall (a:Type), forall (x:a) (l:(list a)), (mem x l) ->
Set Implicit Arguments.
Fixpoint reverse (a:Type)(l:(list a)) {struct l}: (list a) :=
match l with
| Nil => (Nil:(list a))
| (Cons x r) => (infix_plpl (reverse r) (Cons x (Nil:(list a))))
| Nil => (Nil :(list a))
| (Cons x r) => (infix_plpl (reverse r) (Cons x (Nil :(list a))))
end.
Unset Implicit Arguments.
......@@ -144,8 +144,8 @@ Set Contextual Implicit.
Implicit Arguments const.
Unset Contextual Implicit.
Axiom Const : forall (b:Type) (a:Type), forall (b1:b) (a1:a), ((get (const(
b1):(map a b)) a1) = b1).
Axiom Const : forall (b:Type) (a:Type), forall (b1:b) (a1:a),
((get (const b1:(map a b)) a1) = b1).
Parameter loc : Type.
......@@ -154,7 +154,7 @@ Parameter null: loc.
Inductive list_seg : loc -> (map loc loc) -> (list loc) -> loc -> Prop :=
| list_seg_nil : forall (p:loc) (next:(map loc loc)), (list_seg p next
(Nil:(list loc)) p)
(Nil :(list loc)) p)
| list_seg_cons : forall (p:loc) (q:loc) (next:(map loc loc)) (l:(list
loc)), ((~ (p = null)) /\ (list_seg (get next p) next l q)) ->
(list_seg p next (Cons p l) q).
......@@ -170,19 +170,18 @@ Theorem list_seg_frame : forall (next1:(map loc loc)) (next2:(map loc loc))
intros until pM.
generalize p; clear p.
elim pM.
intros p (h1,(h2,h3)).
(* case pM = Nil *)
intros p (h1&h2&h3).
inversion h1; subst; clear h1.
constructor.
intros a l Hind p (h1,(h2,h3)).
(* case pM = Cons a l *)
intros a l Hind p (h1&h2&h3).
inversion h1; subst; clear h1.
destruct H4.
constructor.
split; auto.
constructor; split; auto.
simpl in h3.
rewrite Select_neq.
apply Hind.
split; auto.
intuition.
rewrite Select_neq; auto.
apply Hind; split; auto.
Qed.
(* DO NOT EDIT BELOW *)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment