Attention une mise à jour du serveur va être effectuée le lundi 17 mai entre 13h et 13h30. Cette mise à jour va générer une interruption du service de quelques minutes.

Commit 6b0eda19 by MARCHE Claude

### a few tests

parent 7845b21e
 theory T type list 'a = Nil | Cons 'a (list 'a) function app (l1:list 'a) (l2:list 'a) : (list 'a) = match l1 with | Nil -> l2 | Cons x r -> Cons x (app r l2) end lemma app_nil : forall l:list 'a. app l Nil = l type tree = Leaf int | Node tree tree end

 theory TestOverriding use import settheory.Relation use import settheory.InverseDomRan use import settheory.Overriding use import settheory.Function constant f : rel int int = singleton (3,4) constant g : rel int int = f <+ (singleton (5,6)) constant h : rel int int = g <+ (singleton (3,7)) goal testdom1: mem 3 (dom g) goal testdom2: mem 3 (dom h) goal testapply1: apply f 3 = 4 goal testapply2: apply g 3 = 4 goal testapply3: apply g 5 = 6 goal testapply4: apply h 3 = 7 goal testapply5: apply h 5 = 6 goal testapply_smoke1: apply h 3 = 8 goal testapply_smoke2: apply h 5 = 9 end theory TestCompose use import settheory.Relation use import settheory.InverseDomRan use import settheory.Composition use import settheory.Function constant f : rel int int = singleton (3,4) constant g : rel int int = singleton (4,6) constant h : rel int int = semicolon f g use import settheory.Interval constant fun_int_int : set (rel int int) = integer +-> integer (* lemma f_is_fun : mem f fun_int_int lemma g_is_fun : mem g fun_int_int lemma h_is_fun : mem h fun_int_int *) goal test1: mem (apply h 3) (Interval.mk 0 10) goal test2: 0 <= apply h 3 <= 10 goal test3: apply h 3 = 6 end