Commit 6a36c00a by Guillaume Melquiond

### Use why3doc comments rather than why3 label for module documentation.

parent 5e8735b3
 ... ... @@ -31,7 +31,7 @@ end - an evaluation stack, containing integers. *) theory Vm "Virtual Machine for IMP language" theory Vm use import state.State use import int.Int ... ...
 ... ... @@ -9,7 +9,9 @@ be: By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. *) theory FibSumEven "sum of even-valued Fibonacci numbers" (** {2 Sum of even-valued Fibonacci numbers} *) theory FibSumEven use import int.Int use import int.Fibonacci ... ...
 ... ... @@ -31,7 +31,9 @@ module FibonacciLinear end module FibRecGhost "recursive version, using ghost code" (** {2 Recursive version, using ghost code} *) module FibRecGhost use import int.Fibonacci use import int.Int ... ... @@ -57,7 +59,9 @@ module FibRecGhost "recursive version, using ghost code" end module FibRecNoGhost "recursive version, without ghost code" (** {2 Recursive version, without ghost code} *) module FibRecNoGhost use import int.Fibonacci use import int.Int ... ... @@ -257,7 +261,9 @@ module Zeckendorf end theory Mat22 "2x2 integer matrices" (** {2 2x2 integer matrices} *) theory Mat22 use import int.Int ... ...
 ... ... @@ -23,7 +23,9 @@ theory Hyps end module Induction1 "with a simple induction" (** {2 With a simple induction} *) module Induction1 use import Hyps predicate pr (k: int) = p k && p (k+1) ... ... @@ -34,7 +36,9 @@ module Induction1 "with a simple induction" end module Induction2 "with a strong induction" (** {2 With a strong induction} *) module Induction2 use import Hyps clone import int.Induction ... ... @@ -44,7 +48,9 @@ module Induction2 "with a strong induction" end module LemmaFunction1 "with a recursive lemma function" (** {2 With a recursive lemma function} *) module LemmaFunction1 use import Hyps let rec lemma ind (n: int) requires { 0 <= n} ensures { p n } ... ... @@ -57,7 +63,9 @@ module LemmaFunction1 "with a recursive lemma function" end module LemmaFunction2 "with a while loop" (** {2 With a while loop} *) module LemmaFunction2 use import Hyps use import ref.Ref ... ... @@ -73,7 +81,9 @@ module LemmaFunction2 "with a while loop" end module LemmaFunction3 "with an ascending while loop" (** {2 With an ascending while loop} *) module LemmaFunction3 use import Hyps use import ref.Ref ... ...
 ... ... @@ -18,8 +18,12 @@ theory Bijection axiom Of_to : forall y : u. of (to_ y) = y end theory Einstein "Einstein's problem" (** {2 Einstein's problem} *) theory Einstein (** Types *) type house = H1 | H2 | H3 | H4 | H5 type color = Blue | Green | Red | White | Yellow type person = Dane | Englishman | German | Norwegian | Swede ... ... @@ -28,15 +32,18 @@ theory Einstein "Einstein's problem" type pet = Birds | Cats | Dogs | Fish | Horse (** Each house is associated bijectively to a color and a person *) clone Bijection as Color with type t = house, type u = color clone Bijection as Owner with type t = house, type u = person (** Each drink, cigar brand and pet are associated bijectively to a person *) clone Bijection as Drink with type t = person, type u = drink clone Bijection as Cigar with type t = person, type u = cigar clone Bijection as Pet with type t = person, type u = pet (** Relative positions of the houses *) predicate leftof (h1 h2 : house) = match h1, h2 with | H1, H2 ... ... @@ -105,7 +112,9 @@ theory Einstein "Einstein's problem" end theory Goals "Goals about Einstein's problem" (** {2 Goals about Einstein's problem} *) theory Goals use import Einstein (* ... ...
 theory HelloProof "My very first Why3 theory" theory HelloProof goal G1 : true ... ...
 (* (** {1 The Scottish private club puzzle} *) The classical example of the Scottish private club puzzle (* The club follows six rules: The club follows six rules: - every non-scotti``sh members wear red socks - every non-scottish members wear red socks - every member wears a kilt or doesn't wear socks ... ... @@ -16,11 +14,11 @@ The club follows six rules: - every scottish member wears a kilt Problem: prove that there is nobody in this club ! Problem: prove that there is nobody in this club! *) theory ScottishClubProblem "the Scottish private club puzzle" theory ScottishClubProblem predicate is_scottish predicate wears_red_socks ... ...
 ... ... @@ -19,7 +19,7 @@ maximum and memo). *) theory Bitset "sets of small integers" theory Bitset use import int.Int ... ...
 ... ... @@ -134,7 +134,9 @@ module BitsSpec ensures { result.mdl = interval 0 (BV32.t'int n) } end module Bits "the 1-bits of an integer, as a set of integers" (** {2 The 1-bits of an integer, as a set of integers} *) module Bits use import S use import bv.BV32 ... ...
 ... ... @@ -66,9 +66,11 @@ module Quicksort end (** {2 Knuth' shuffle} *) (* a realistic quicksort first shuffles the array *) module Shuffle "Knuth shuffle" module Shuffle use import int.Int use import array.Array ... ...
 ... ... @@ -5,7 +5,7 @@ c+d)/2));return f;}main(q){scanf("%d",&q);printf("%d\n",t(~(~0<
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!