Commit 5b9c9181 by Guillaume Melquiond

### Remove obsolete theories that were commented out.

parent 1aefe837
 ... ... @@ -113,64 +113,6 @@ theory ReflTransClosure forall x y z: t. relTR x y -> relTR y z -> relTR x z end (*** theory PreOrder type t predicate le t t axiom Refl : forall x:t. le(x,x) axiom Trans : forall x y z:t. le x y /\ le y z -> le x z end theory Equiv type t predicate eq t t clone PreOrder with type t = t, predicate le = eq axiom Symm : forall x y:t. eq x y -> eq y x end theory TotalPreOrder type t predicate le t t clone export PreOrder with type t = t, predicate le = le axiom Totality: forall x y:t. le x y \/ le y x end *) (*** theory TotalOrder type t predicate eq t t clone Equiv with type t = t, predicate eq = eq predicate le t t clone PreOrder with type t = t, predicate le = le axiom Totality: forall x y:t. eq x y \/ le x y \/ le y x predicate lt (x y : t) = le x y /\ not eq x y lemma Lt_antirefl: forall x:t. not lt x x lemma Lt_trans: forall x y z:t. lt x y /\ lt y z -> lt x z lemma Le_lt_trans: forall x y z:t. le x y /\ lt y z -> lt x z lemma Lt_le_trans: forall x y z:t. lt x y /\ le y z -> lt x z end *) theory Lex type t1 ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!