Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Why3
why3
Commits
4c831e45
Commit
4c831e45
authored
Sep 03, 2012
by
MARCHE Claude
Browse files
fix unused quantified variables
parent
942829fd
Changes
12
Hide whitespace changes
Inline
Side-by-side
bench/typing/good/clash_namespace1.why
View file @
4c831e45
...
...
@@ -3,7 +3,7 @@
theory A
type t
axiom Ax : forall x:t.
true
axiom Ax : forall x:t.
x=x
end
theory B
...
...
examples/check-builtin/minmax.why
View file @
4c831e45
...
...
@@ -4,5 +4,5 @@ theory MinMax
goal G : forall x y z : t. ge z y -> ge z x -> ge y x ->
min x (max (min z x) y) = x
goal G2 : forall x y
z
: t. max x y = x -> ge x y
goal G2 : forall x y: t. max x y = x -> ge x y
end
\ No newline at end of file
examples/explicit_subst.why
View file @
4c831e45
...
...
@@ -37,7 +37,7 @@ theory LambdaCalc
forall t : term 'b.
subst (Var j) i t = if i = j then t else (Var j) (* correct ?*)
axiom Subst_def1 : forall i
j
: nat.
axiom Subst_def1 : forall i : nat.
forall t : term 'b. subst (Var i) i t = t
axiom Subst_def2 : forall t1 : term 'a. forall i : nat.
...
...
@@ -48,7 +48,7 @@ theory LambdaCalc
function app (t1 : term 'a) (t2 : term 'b) : term 'a
axiom App_def :
forall t1 : term 'a. forall
i : nat. forall
t2 : term 'b.
forall t1 : term 'a. forall t2 : term 'b.
app (Lambda t1) t2 = subst t1 Zero t2
(* When we remove one of the following example the axiomatic is not anymore inconsistent *)
...
...
@@ -142,7 +142,7 @@ theory LambdaCalc2
function app (t1 : app 'b 'a) (t2 : 'b) : 'a
axiom App_def :
forall t1 : 'a. forall
i : nat. forall
t2 : 'b.
forall t1 : 'a. forall t2 : 'b.
app (lambda t1) t2 = subst t1 Zero t2
(* axiom Subst_app : *)
...
...
examples/hoare_logic/wp3.mlw
View file @
4c831e45
...
...
@@ -179,7 +179,7 @@ inductive one_step env env expr env env expr =
sigma' pi' (Eassign x e')
| one_step_assign_value:
forall sigma pi:env, x:ident, v:value
, e:term
.
forall sigma pi:env, x:ident, v:value.
one_step sigma pi (Eassign x (Evalue v))
(IdMap.set sigma x v) pi void
...
...
examples/hoare_logic/wp4.mlw
View file @
4c831e45
...
...
@@ -232,7 +232,7 @@ inductive one_step env stack expr env stack expr =
sigma' pi' (Eassign x e')
| one_step_assign_value:
forall sigma:env, pi:stack, x:refident, v:value
, e:term
.
forall sigma:env, pi:stack, x:refident, v:value.
one_step sigma pi (Eassign x (Evalue v))
(IdMap.set sigma x v) pi void
...
...
@@ -242,7 +242,7 @@ inductive one_step env stack expr env stack expr =
one_step sigma pi (Eseq e1 e2) sigma' pi' (Eseq e1' e2)
| one_step_seq_value:
forall sigma:env, pi:stack,
id:ident,
e:expr.
forall sigma:env, pi:stack, e:expr.
one_step sigma pi (Eseq void e) sigma pi e
| one_step_let_ctxt:
...
...
@@ -255,16 +255,16 @@ inductive one_step env stack expr env stack expr =
one_step sigma pi (Elet id (Evalue v) e) sigma (Cons (id,v) pi) e
| one_step_if_ctxt:
forall sigma sigma':env, pi pi':stack,
id:ident,
e1 e1' e2 e3:expr.
forall sigma sigma':env, pi pi':stack, e1 e1' e2 e3:expr.
one_step sigma pi e1 sigma' pi' e1' ->
one_step sigma pi (Eif e1 e2 e3) sigma' pi' (Eif e1' e2 e3)
| one_step_if_true:
forall sigma:env, pi:stack,
e:term,
e1 e2:expr.
forall sigma:env, pi:stack, e1 e2:expr.
one_step sigma pi (Eif (Evalue (Vbool True)) e1 e2) sigma pi e1
| one_step_if_false:
forall sigma:env, pi:stack,
e:term,
e1 e2:expr.
forall sigma:env, pi:stack, e1 e2:expr.
one_step sigma pi (Eif (Evalue (Vbool False)) e1 e2) sigma pi e2
| one_step_assert:
...
...
examples/programs/euler002.mlw
View file @
4c831e45
...
...
@@ -45,11 +45,11 @@ theory FibSumEven "sum of even-valued Fibonacci numbers"
(* Note: we take for granted that [fib] is an
increasing sequence *)
axiom SumYes: forall n m
s
:int.
axiom SumYes: forall n m:int.
n >= 0 -> (fib n) < m -> mod (fib n) 2 = 0 ->
fib_sum_even_lt_from m n = fib_sum_even_lt_from m (n+1) + (fib n)
axiom SumOdd: forall n m
s
:int.
axiom SumOdd: forall n m:int.
n >= 0 -> mod (fib n) 2 <> 0 ->
fib_sum_even_lt_from m n = fib_sum_even_lt_from m (n+1)
...
...
examples/programs/list_rev.mlw
View file @
4c831e45
...
...
@@ -99,7 +99,7 @@ module M
(** Frame for list_disj *)
axiom frame_list_disj :
forall
ft : ft pointer,
next : next,
forall next : next,
p1 : pointer, p2 : pointer, q : pointer, v : pointer
[list_disj (list_ft next[q <- v] p1) next[q <- v] p2].
(not in_ft q (list_ft next p1)) -> (not in_ft q (list_ft next p2))
...
...
@@ -148,7 +148,7 @@ module M
(**
frame
model
*)
axiom
frame_model
:
forall
ft
:
ft
pointer
,
next
:
next
,
forall
next
:
next
,
p
:
pointer
,
q
:
pointer
,
v
:
pointer
[
model
next
[
q
<-
v
]
p
].
(
not
in_ft
q
(
list_ft
next
p
))
->
model
next
p
=
model
next
[
q
<-
v
]
p
...
...
@@ -316,7 +316,7 @@ module M2
(** frame model *)
lemma frame_model :
forall
ft : ft pointer,
next : next,
forall next : next,
p : pointer, q : pointer, v : pointer[model next[q <- v] p].
is_list next p ->
(not in_ft q (list_ft next p)) ->
...
...
examples/set.why
View file @
4c831e45
...
...
@@ -14,10 +14,10 @@ theory Bidule
goal Inter : forall s1 s2 : s. forall x : a.
mem x (inter s1 s2) -> (mem x s1 /\ mem x s2)
goal Union_inter : forall s1 s2 s3 : s.
forall x : a.
goal Union_inter : forall s1 s2 s3 : s.
equal (inter (union s1 s2) s3) (union (inter s1 s3) (inter s2 s3))
lemma Union_assoc : forall s1 s2 s3 : s.
forall x : a.
lemma Union_assoc : forall s1 s2 s3 : s.
equal (union (union s1 s2) s3) (union s1 (union s2 s3))
clone algebra.Assoc with type t = s, function op = union, goal Assoc
...
...
examples/triangle_inequality.why
View file @
4c831e45
...
...
@@ -51,18 +51,18 @@ theory CauchySchwarzInequality
forall x y:real. y <> 0.0 -> (x/y)*y = x
lemma p_val_part:
forall x1 x2 y1 y2
t
:real.
forall x1 x2 y1 y2:real.
norm2 y1 y2 > 0.0 ->
p x1 x2 y1 y2 (- dot x1 x2 y1 y2 / norm2 y1 y2) =
norm2 x1 x2 - sqr (dot x1 x2 y1 y2) / norm2 y1 y2
lemma p_val_part_pos:
forall x1 x2 y1 y2
t
:real.
forall x1 x2 y1 y2:real.
norm2 y1 y2 > 0.0 ->
norm2 x1 x2 - sqr (dot x1 x2 y1 y2) / norm2 y1 y2 >= 0.0
lemma p_val_part_pos_aux:
forall x1 x2 y1 y2
t
:real.
forall x1 x2 y1 y2:real.
norm2 y1 y2 > 0.0 ->
norm2 y1 y2 * p x1 x2 y1 y2 (- dot x1 x2 y1 y2 / norm2 y1 y2) >= 0.0
...
...
theories/graph.why
View file @
4c831e45
...
...
@@ -57,7 +57,7 @@ theory IntPathWeight
end
lemma path_weight_right_extension:
forall x y
z
: vertex, l: list vertex.
forall x y: vertex, l: list vertex.
path_weight (l ++ Cons x Nil) y = path_weight l x + weight x y
lemma path_weight_decomposition:
...
...
theories/number.why
View file @
4c831e45
...
...
@@ -135,7 +135,7 @@ theory Gcd
use int.EuclideanDivision
lemma Gcd_euclidean_mod:
forall a b
g
: int [gcd b (EuclideanDivision.mod a b)].
forall a b: int [gcd b (EuclideanDivision.mod a b)].
b <> 0 -> gcd b (EuclideanDivision.mod a b) = gcd a b
lemma gcd_mult: forall a b c: int. 0 <= c -> gcd (c * a) (c * b) = c * gcd a b
...
...
theories/real.why
View file @
4c831e45
...
...
@@ -111,7 +111,7 @@ theory FromInt
axiom Mul:
forall x y:int. from_int (Int.(*) x y) = from_int x * from_int y
axiom Neg:
forall x
y
:int. from_int (Int.(-_) (x)) = - from_int x
forall x:int. from_int (Int.(-_) (x)) = - from_int x
end
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment