Commit 3b914df5 by MARCHE Claude

### document syntax change: meta on propositions

parent 48403746
 ... ... @@ -315,6 +315,8 @@ egalite sur les type algebriques ? engendrees automatiquement ? \hline \texttt{"attribute"} & \texttt{[@attribute]} \\ \hline \texttt{meta M prop P} & \texttt{meta M lemma P} or \texttt{meta M axiom P} or \texttt{meta M goal P} \\ \hline \end{tabular} \end{center} ... ...
 ... ... @@ -12,15 +12,15 @@ module ApplyRewrite use HighOrd axiom H: forall x. (\z: int. x + z) = f x axiom H: forall x. (fun (z: int) -> x + z) = f x goal g1: (\toto. 42 + toto) = f 42 goal g1: (fun toto -> 42 + toto) = f 42 axiom Ha: forall x. (\z: int. x + z) 2 = 2 axiom Ha: forall x. (fun (z: int) -> x + z) 2 = 2 goal g3: (\toto. 42 + toto) 2 = 2 goal g3: (fun toto -> 42 + toto) 2 = 2 goal g2: (\y. y + y) = f 24 goal g2: (fun y -> y + y) = f 24 end module A ... ... @@ -34,7 +34,7 @@ module A goal g1: exists x. f x = x + 42 goal g: (\y. f y) 0 = 3 goal g: (fun y -> f y) 0 = 3 constant b: bool ... ... @@ -52,9 +52,9 @@ module Soundness function f0 (x y z:int) : int = x * y + z predicate p (f:int -> int) = f (-1) = 0 && forall n:int. f n = f 0 + (f 1 - f 0) * n lemma A : forall y z:int. p (\x. f0 x y z) <-> y = z meta rewrite prop A lemma Fail : 0 = 0 /\ p (\x. f0 x x x) lemma A : forall y z:int. p (fun x -> f0 x y z) <-> y = z meta rewrite lemma A lemma Fail : 0 = 0 /\ p (fun x -> f0 x x x) lemma Absurd : false end ... ... @@ -62,7 +62,7 @@ module TestCEX use import int.Int goal g: forall x "model". x=0 goal g: forall x. x=0 end ... ...
 ... ... @@ -8,13 +8,13 @@ ... ... @@ -36,7 +36,7 @@ ... ... @@ -50,72 +50,75 @@ ... ... @@ -133,25 +136,35 @@ ... ... @@ -159,7 +172,7 @@ ... ... @@ -167,51 +180,52 @@ ... ... @@ -219,43 +233,20 @@ ... ...
No preview for this file type
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!