Commit 398b9752 authored by Jean-Christophe Filliâtre's avatar Jean-Christophe Filliâtre
Browse files

cleaning up obsolete Coq files

parent dbf59c64
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below *)
Require Import ZArith.
Require Import Rbase.
Definition unit := unit.
Parameter mark : Type.
Parameter at1: forall (a:Type), a -> mark -> a.
Implicit Arguments at1.
Parameter old: forall (a:Type), a -> a.
Implicit Arguments old.
Inductive ref (a:Type) :=
| mk_ref : a -> ref a.
Implicit Arguments mk_ref.
Definition contents (a:Type)(u:(ref a)): a :=
match u with
| mk_ref contents1 => contents1
end.
Implicit Arguments contents.
Parameter map : forall (a:Type) (b:Type), Type.
Parameter get: forall (a:Type) (b:Type), (map a b) -> a -> b.
Implicit Arguments get.
Parameter set: forall (a:Type) (b:Type), (map a b) -> a -> b -> (map a b).
Implicit Arguments set.
Axiom Select_eq : forall (a:Type) (b:Type), forall (m:(map a b)),
forall (a1:a) (a2:a), forall (b1:b), (a1 = a2) -> ((get (set m a1 b1)
a2) = b1).
Axiom Select_neq : forall (a:Type) (b:Type), forall (m:(map a b)),
forall (a1:a) (a2:a), forall (b1:b), (~ (a1 = a2)) -> ((get (set m a1 b1)
a2) = (get m a2)).
Parameter const: forall (b:Type) (a:Type), b -> (map a b).
Set Contextual Implicit.
Implicit Arguments const.
Unset Contextual Implicit.
Axiom Const : forall (b:Type) (a:Type), forall (b1:b) (a1:a), ((get (const(
b1):(map a b)) a1) = b1).
Inductive array (a:Type) :=
| mk_array : Z -> (map Z a) -> array a.
Implicit Arguments mk_array.
Definition elts (a:Type)(u:(array a)): (map Z a) :=
match u with
| mk_array _ elts1 => elts1
end.
Implicit Arguments elts.
Definition length (a:Type)(u:(array a)): Z :=
match u with
| mk_array length1 _ => length1
end.
Implicit Arguments length.
Definition get1 (a:Type)(a1:(array a)) (i:Z): a := (get (elts a1) i).
Implicit Arguments get1.
Definition set1 (a:Type)(a1:(array a)) (i:Z) (v:a): (array a) :=
match a1 with
| mk_array xcl0 _ => (mk_array xcl0 (set (elts a1) i v))
end.
Implicit Arguments set1.
Definition map_eq_sub (a:Type)(a1:(map Z a)) (a2:(map Z a)) (l:Z)
(u:Z): Prop := forall (i:Z), ((l <= i)%Z /\ (i < u)%Z) -> ((get a1
i) = (get a2 i)).
Implicit Arguments map_eq_sub.
Definition exchange (a:Type)(a1:(map Z a)) (a2:(map Z a)) (i:Z)
(j:Z): Prop := ((get a1 i) = (get a2 j)) /\ (((get a2 i) = (get a1 j)) /\
forall (k:Z), ((~ (k = i)) /\ ~ (k = j)) -> ((get a1 k) = (get a2 k))).
Implicit Arguments exchange.
Axiom exchange_set : forall (a:Type), forall (a1:(map Z a)), forall (i:Z)
(j:Z), (exchange a1 (set (set a1 i (get a1 j)) j (get a1 i)) i j).
Inductive permut_sub{a:Type} : (map Z a) -> (map Z a) -> Z -> Z -> Prop :=
| permut_refl : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z) (u:Z),
(map_eq_sub a1 a2 l u) -> (permut_sub a1 a2 l u)
| permut_sym : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z) (u:Z),
(permut_sub a1 a2 l u) -> (permut_sub a2 a1 l u)
| permut_trans : forall (a1:(map Z a)) (a2:(map Z a)) (a3:(map Z a)),
forall (l:Z) (u:Z), (permut_sub a1 a2 l u) -> ((permut_sub a2 a3 l
u) -> (permut_sub a1 a3 l u))
| permut_exchange : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z)
(u:Z) (i:Z) (j:Z), ((l <= i)%Z /\ (i < u)%Z) -> (((l <= j)%Z /\
(j < u)%Z) -> ((exchange a1 a2 i j) -> (permut_sub a1 a2 l u))).
Implicit Arguments permut_sub.
Axiom permut_weakening : forall (a:Type), forall (a1:(map Z a)) (a2:(map Z
a)), forall (l1:Z) (r1:Z) (l2:Z) (r2:Z), (((l1 <= l2)%Z /\ (l2 <= r2)%Z) /\
(r2 <= r1)%Z) -> ((permut_sub a1 a2 l2 r2) -> (permut_sub a1 a2 l1 r1)).
Axiom permut_eq : forall (a:Type), forall (a1:(map Z a)) (a2:(map Z a)),
forall (l:Z) (u:Z), (l <= u)%Z -> ((permut_sub a1 a2 l u) -> forall (i:Z),
((i < l)%Z \/ (u <= i)%Z) -> ((get a2 i) = (get a1 i))).
Axiom permut_exists : forall (a:Type), forall (a1:(map Z a)) (a2:(map Z a)),
forall (l:Z) (u:Z), (permut_sub a1 a2 l u) -> forall (i:Z), ((l <= i)%Z /\
(i < u)%Z) -> exists j:Z, ((l <= j)%Z /\ (j < u)%Z) /\ ((get a2
i) = (get a1 j)).
Definition exchange1 (a:Type)(a1:(array a)) (a2:(array a)) (i:Z)
(j:Z): Prop := (exchange (elts a1) (elts a2) i j).
Implicit Arguments exchange1.
Definition permut_sub1 (a:Type)(a1:(array a)) (a2:(array a)) (l:Z)
(u:Z): Prop := (permut_sub (elts a1) (elts a2) l u).
Implicit Arguments permut_sub1.
Definition permut (a:Type)(a1:(array a)) (a2:(array a)): Prop :=
((length a1) = (length a2)) /\ (permut_sub (elts a1) (elts a2) 0%Z
(length a1)).
Implicit Arguments permut.
Axiom exchange_permut : forall (a:Type), forall (a1:(array a)) (a2:(array a))
(i:Z) (j:Z), (exchange1 a1 a2 i j) -> (((length a1) = (length a2)) ->
(((0%Z <= i)%Z /\ (i < (length a1))%Z) -> (((0%Z <= j)%Z /\
(j < (length a1))%Z) -> (permut a1 a2)))).
Definition array_eq_sub (a:Type)(a1:(array a)) (a2:(array a)) (l:Z)
(u:Z): Prop := (map_eq_sub (elts a1) (elts a2) l u).
Implicit Arguments array_eq_sub.
Definition array_eq (a:Type)(a1:(array a)) (a2:(array a)): Prop :=
((length a1) = (length a2)) /\ (array_eq_sub a1 a2 0%Z (length a1)).
Implicit Arguments array_eq.
Axiom array_eq_sub_permut : forall (a:Type), forall (a1:(array a)) (a2:(array
a)) (l:Z) (u:Z), (array_eq_sub a1 a2 l u) -> (permut_sub1 a1 a2 l u).
Axiom array_eq_permut : forall (a:Type), forall (a1:(array a)) (a2:(array
a)), (array_eq a1 a2) -> (permut a1 a2).
Inductive color :=
| Blue : color
| White : color
| Red : color .
Definition monochrome(a:(array color)) (i:Z) (j:Z) (c:color): Prop :=
forall (k:Z), ((i <= k)%Z /\ (k < j)%Z) -> ((get1 a k) = c).
Theorem WP_parameter_dutch_flag : forall (a:Z), forall (n:Z), forall (a1:(map
Z color)), ((0%Z <= n)%Z /\ (a = n)) -> forall (r:Z), forall (i:Z),
forall (b:Z), forall (a2:(map Z color)), let a3 := (mk_array a a2) in
((((((0%Z <= b)%Z /\ (b <= i)%Z) /\ (i <= r)%Z) /\ (r <= n)%Z) /\
((monochrome a3 0%Z b (Blue )) /\ ((monochrome a3 b i (White )) /\
((monochrome a3 r n (Red )) /\ ((a = n) /\ (permut_sub a2 a1 0%Z n)))))) ->
((i < r)%Z -> (((0%Z <= i)%Z /\ (i < a)%Z) -> match (get a2
i) with
| Blue => True
| White => True
| Red => forall (r1:Z), (r1 = (r - 1%Z)%Z) -> ((((0%Z <= r1)%Z /\
(r1 < a)%Z) /\ ((0%Z <= i)%Z /\ (i < a)%Z)) -> forall (a4:(map Z
color)), (exchange a4 a2 r1 i) -> (monochrome (mk_array a a4) r1 n
(Red )))
end))).
(* YOU MAY EDIT THE PROOF BELOW *)
unfold exchange; intuition.
destruct (get a2 i); intuition.
red; intros.
subst r1.
assert (h: (k = r-1 \/ r <= k < n)%Z) by omega.
destruct h.
subst k.
unfold get1.
auto.
unfold get1; simpl.
rewrite H21; try omega.
apply H5; omega.
Qed.
(* DO NOT EDIT BELOW *)
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below *)
Require Import ZArith.
Require Import Rbase.
Definition unit := unit.
Parameter mark : Type.
Parameter at1: forall (a:Type), a -> mark -> a.
Implicit Arguments at1.
Parameter old: forall (a:Type), a -> a.
Implicit Arguments old.
Inductive ref (a:Type) :=
| mk_ref : a -> ref a.
Implicit Arguments mk_ref.
Definition contents (a:Type)(u:(ref a)): a :=
match u with
| mk_ref contents1 => contents1
end.
Implicit Arguments contents.
Parameter map : forall (a:Type) (b:Type), Type.
Parameter get: forall (a:Type) (b:Type), (map a b) -> a -> b.
Implicit Arguments get.
Parameter set: forall (a:Type) (b:Type), (map a b) -> a -> b -> (map a b).
Implicit Arguments set.
Axiom Select_eq : forall (a:Type) (b:Type), forall (m:(map a b)),
forall (a1:a) (a2:a), forall (b1:b), (a1 = a2) -> ((get (set m a1 b1)
a2) = b1).
Axiom Select_neq : forall (a:Type) (b:Type), forall (m:(map a b)),
forall (a1:a) (a2:a), forall (b1:b), (~ (a1 = a2)) -> ((get (set m a1 b1)
a2) = (get m a2)).
Parameter const: forall (b:Type) (a:Type), b -> (map a b).
Set Contextual Implicit.
Implicit Arguments const.
Unset Contextual Implicit.
Axiom Const : forall (b:Type) (a:Type), forall (b1:b) (a1:a), ((get (const(
b1):(map a b)) a1) = b1).
Inductive array (a:Type) :=
| mk_array : Z -> (map Z a) -> array a.
Implicit Arguments mk_array.
Definition elts (a:Type)(u:(array a)): (map Z a) :=
match u with
| mk_array _ elts1 => elts1
end.
Implicit Arguments elts.
Definition length (a:Type)(u:(array a)): Z :=
match u with
| mk_array length1 _ => length1
end.
Implicit Arguments length.
Definition get1 (a:Type)(a1:(array a)) (i:Z): a := (get (elts a1) i).
Implicit Arguments get1.
Definition set1 (a:Type)(a1:(array a)) (i:Z) (v:a): (array a) :=
match a1 with
| mk_array xcl0 _ => (mk_array xcl0 (set (elts a1) i v))
end.
Implicit Arguments set1.
Definition map_eq_sub (a:Type)(a1:(map Z a)) (a2:(map Z a)) (l:Z)
(u:Z): Prop := forall (i:Z), ((l <= i)%Z /\ (i < u)%Z) -> ((get a1
i) = (get a2 i)).
Implicit Arguments map_eq_sub.
Definition exchange (a:Type)(a1:(map Z a)) (a2:(map Z a)) (i:Z)
(j:Z): Prop := ((get a1 i) = (get a2 j)) /\ (((get a2 i) = (get a1 j)) /\
forall (k:Z), ((~ (k = i)) /\ ~ (k = j)) -> ((get a1 k) = (get a2 k))).
Implicit Arguments exchange.
Axiom exchange_set : forall (a:Type), forall (a1:(map Z a)), forall (i:Z)
(j:Z), (exchange a1 (set (set a1 i (get a1 j)) j (get a1 i)) i j).
Inductive permut_sub{a:Type} : (map Z a) -> (map Z a) -> Z -> Z -> Prop :=
| permut_refl : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z) (u:Z),
(map_eq_sub a1 a2 l u) -> (permut_sub a1 a2 l u)
| permut_sym : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z) (u:Z),
(permut_sub a1 a2 l u) -> (permut_sub a2 a1 l u)
| permut_trans : forall (a1:(map Z a)) (a2:(map Z a)) (a3:(map Z a)),
forall (l:Z) (u:Z), (permut_sub a1 a2 l u) -> ((permut_sub a2 a3 l
u) -> (permut_sub a1 a3 l u))
| permut_exchange : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z)
(u:Z) (i:Z) (j:Z), ((l <= i)%Z /\ (i < u)%Z) -> (((l <= j)%Z /\
(j < u)%Z) -> ((exchange a1 a2 i j) -> (permut_sub a1 a2 l u))).
Implicit Arguments permut_sub.
Axiom permut_weakening : forall (a:Type), forall (a1:(map Z a)) (a2:(map Z
a)), forall (l1:Z) (r1:Z) (l2:Z) (r2:Z), (((l1 <= l2)%Z /\ (l2 <= r2)%Z) /\
(r2 <= r1)%Z) -> ((permut_sub a1 a2 l2 r2) -> (permut_sub a1 a2 l1 r1)).
Axiom permut_eq : forall (a:Type), forall (a1:(map Z a)) (a2:(map Z a)),
forall (l:Z) (u:Z), (l <= u)%Z -> ((permut_sub a1 a2 l u) -> forall (i:Z),
((i < l)%Z \/ (u <= i)%Z) -> ((get a2 i) = (get a1 i))).
Axiom permut_exists : forall (a:Type), forall (a1:(map Z a)) (a2:(map Z a)),
forall (l:Z) (u:Z), (permut_sub a1 a2 l u) -> forall (i:Z), ((l <= i)%Z /\
(i < u)%Z) -> exists j:Z, ((l <= j)%Z /\ (j < u)%Z) /\ ((get a2
i) = (get a1 j)).
Definition exchange1 (a:Type)(a1:(array a)) (a2:(array a)) (i:Z)
(j:Z): Prop := (exchange (elts a1) (elts a2) i j).
Implicit Arguments exchange1.
Definition permut_sub1 (a:Type)(a1:(array a)) (a2:(array a)) (l:Z)
(u:Z): Prop := (permut_sub (elts a1) (elts a2) l u).
Implicit Arguments permut_sub1.
Definition permut (a:Type)(a1:(array a)) (a2:(array a)): Prop :=
((length a1) = (length a2)) /\ (permut_sub (elts a1) (elts a2) 0%Z
(length a1)).
Implicit Arguments permut.
Axiom exchange_permut : forall (a:Type), forall (a1:(array a)) (a2:(array a))
(i:Z) (j:Z), (exchange1 a1 a2 i j) -> (((length a1) = (length a2)) ->
(((0%Z <= i)%Z /\ (i < (length a1))%Z) -> (((0%Z <= j)%Z /\
(j < (length a1))%Z) -> (permut a1 a2)))).
Definition array_eq_sub (a:Type)(a1:(array a)) (a2:(array a)) (l:Z)
(u:Z): Prop := (map_eq_sub (elts a1) (elts a2) l u).
Implicit Arguments array_eq_sub.
Definition array_eq (a:Type)(a1:(array a)) (a2:(array a)): Prop :=
((length a1) = (length a2)) /\ (array_eq_sub a1 a2 0%Z (length a1)).
Implicit Arguments array_eq.
Axiom array_eq_sub_permut : forall (a:Type), forall (a1:(array a)) (a2:(array
a)) (l:Z) (u:Z), (array_eq_sub a1 a2 l u) -> (permut_sub1 a1 a2 l u).
Axiom array_eq_permut : forall (a:Type), forall (a1:(array a)) (a2:(array
a)), (array_eq a1 a2) -> (permut a1 a2).
Inductive color :=
| Blue : color
| White : color
| Red : color .
Definition monochrome(a:(array color)) (i:Z) (j:Z) (c:color): Prop :=
forall (k:Z), ((i <= k)%Z /\ (k < j)%Z) -> ((get1 a k) = c).
Theorem WP_parameter_dutch_flag : forall (a:Z), forall (n:Z), forall (a1:(map
Z color)), ((0%Z <= n)%Z /\ (a = n)) -> forall (r:Z), forall (i:Z),
forall (b:Z), forall (a2:(map Z color)), let a3 := (mk_array a a2) in
((((((0%Z <= b)%Z /\ (b <= i)%Z) /\ (i <= r)%Z) /\ (r <= n)%Z) /\
((monochrome a3 0%Z b (Blue )) /\ ((monochrome a3 b i (White )) /\
((monochrome a3 r n (Red )) /\ ((a = n) /\ (permut_sub a2 a1 0%Z n)))))) ->
((i < r)%Z -> (((0%Z <= i)%Z /\ (i < a)%Z) -> match (get a2
i) with
| Blue => (((0%Z <= b)%Z /\ (b < a)%Z) /\ ((0%Z <= i)%Z /\
(i < a)%Z)) -> forall (a4:(map Z color)), (exchange a4 a2 b i) ->
forall (b1:Z), (b1 = (b + 1%Z)%Z) -> forall (i1:Z),
(i1 = (i + 1%Z)%Z) -> (monochrome (mk_array a a4) 0%Z b1 (Blue ))
| White => True
| Red => True
end))).
(* YOU MAY EDIT THE PROOF BELOW *)
unfold exchange; intuition.
destruct (get a2 i); intuition.
red; intros.
subst b1 i1.
assert (h: (0 <= k < b \/ k=b)%Z) by omega.
destruct h.
unfold get1; simpl.
rewrite H20; try omega.
apply H4; omega.
subst k; auto.
Qed.
(* DO NOT EDIT BELOW *)
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below *)
Require Import ZArith.
Require Import Rbase.
Definition unit := unit.
Parameter mark : Type.
Parameter at1: forall (a:Type), a -> mark -> a.
Implicit Arguments at1.
Parameter old: forall (a:Type), a -> a.
Implicit Arguments old.
Inductive ref (a:Type) :=
| mk_ref : a -> ref a.
Implicit Arguments mk_ref.
Definition contents (a:Type)(u:(ref a)): a :=
match u with
| mk_ref contents1 => contents1
end.
Implicit Arguments contents.
Parameter map : forall (a:Type) (b:Type), Type.
Parameter get: forall (a:Type) (b:Type), (map a b) -> a -> b.
Implicit Arguments get.
Parameter set: forall (a:Type) (b:Type), (map a b) -> a -> b -> (map a b).
Implicit Arguments set.
Axiom Select_eq : forall (a:Type) (b:Type), forall (m:(map a b)),
forall (a1:a) (a2:a), forall (b1:b), (a1 = a2) -> ((get (set m a1 b1)
a2) = b1).
Axiom Select_neq : forall (a:Type) (b:Type), forall (m:(map a b)),
forall (a1:a) (a2:a), forall (b1:b), (~ (a1 = a2)) -> ((get (set m a1 b1)
a2) = (get m a2)).
Parameter const: forall (b:Type) (a:Type), b -> (map a b).
Set Contextual Implicit.
Implicit Arguments const.
Unset Contextual Implicit.
Axiom Const : forall (b:Type) (a:Type), forall (b1:b) (a1:a), ((get (const(
b1):(map a b)) a1) = b1).
Inductive array (a:Type) :=
| mk_array : Z -> (map Z a) -> array a.
Implicit Arguments mk_array.
Definition elts (a:Type)(u:(array a)): (map Z a) :=
match u with
| mk_array _ elts1 => elts1
end.
Implicit Arguments elts.
Definition length (a:Type)(u:(array a)): Z :=
match u with
| mk_array length1 _ => length1
end.
Implicit Arguments length.
Definition get1 (a:Type)(a1:(array a)) (i:Z): a := (get (elts a1) i).
Implicit Arguments get1.
Definition set1 (a:Type)(a1:(array a)) (i:Z) (v:a): (array a) :=
match a1 with
| mk_array xcl0 _ => (mk_array xcl0 (set (elts a1) i v))
end.
Implicit Arguments set1.
Definition map_eq_sub (a:Type)(a1:(map Z a)) (a2:(map Z a)) (l:Z)
(u:Z): Prop := forall (i:Z), ((l <= i)%Z /\ (i < u)%Z) -> ((get a1
i) = (get a2 i)).
Implicit Arguments map_eq_sub.
Definition exchange (a:Type)(a1:(map Z a)) (a2:(map Z a)) (i:Z)
(j:Z): Prop := ((get a1 i) = (get a2 j)) /\ (((get a2 i) = (get a1 j)) /\
forall (k:Z), ((~ (k = i)) /\ ~ (k = j)) -> ((get a1 k) = (get a2 k))).
Implicit Arguments exchange.
Axiom exchange_set : forall (a:Type), forall (a1:(map Z a)), forall (i:Z)
(j:Z), (exchange a1 (set (set a1 i (get a1 j)) j (get a1 i)) i j).
Inductive permut_sub{a:Type} : (map Z a) -> (map Z a) -> Z -> Z -> Prop :=
| permut_refl : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z) (u:Z),
(map_eq_sub a1 a2 l u) -> (permut_sub a1 a2 l u)
| permut_sym : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z) (u:Z),
(permut_sub a1 a2 l u) -> (permut_sub a2 a1 l u)
| permut_trans : forall (a1:(map Z a)) (a2:(map Z a)) (a3:(map Z a)),
forall (l:Z) (u:Z), (permut_sub a1 a2 l u) -> ((permut_sub a2 a3 l
u) -> (permut_sub a1 a3 l u))
| permut_exchange : forall (a1:(map Z a)) (a2:(map Z a)), forall (l:Z)
(u:Z) (i:Z) (j:Z), ((l <= i)%Z /\ (i < u)%Z) -> (((l <= j)%Z /\
(j < u)%Z) -> ((exchange a1 a2 i j) -> (permut_sub a1 a2 l u))).
Implicit Arguments permut_sub.
Axiom permut_weakening : forall (a:Type), forall (a1:(map Z a)) (a2:(map Z
a)), forall (l1:Z) (r1:Z) (l2:Z) (r2:Z), (((l1 <= l2)%Z /\ (l2 <= r2)%Z) /\
(r2 <= r1)%Z) -> ((permut_sub a1 a2 l2 r2) -> (permut_sub a1 a2 l1 r1)).
Axiom permut_eq : forall (a:Type), forall (a1:(map Z a)) (a2:(map Z a)),
forall (l:Z) (u:Z), (l <= u)%Z -> ((permut_sub a1 a2 l u) -> forall (i:Z),
((i < l)%Z \/ (u <= i)%Z) -> ((get a2 i) = (get a1 i))).
Axiom permut_exists : forall (a:Type), forall (a1:(map Z a)) (a2:(map Z a)),
forall (l:Z) (u:Z), (permut_sub a1 a2 l u) -> forall (i:Z), ((l <= i)%Z /\
(i < u)%Z) -> exists j:Z, ((l <= j)%Z /\ (j < u)%Z) /\ ((get a2
i) = (get a1 j)).
Definition exchange1 (a:Type)(a1:(array a)) (a2:(array a)) (i:Z)
(j:Z): Prop := (exchange (elts a1) (elts a2) i j).
Implicit Arguments exchange1.
Definition permut_sub1 (a:Type)(a1:(array a)) (a2:(array a)) (l:Z)
(u:Z): Prop := (permut_sub (elts a1) (elts a2) l u).
Implicit Arguments permut_sub1.
Definition permut (a:Type)(a1:(array a)) (a2:(array a)): Prop :=
((length a1) = (length a2)) /\ (permut_sub (elts a1) (elts a2) 0%Z
(length a1)).
Implicit Arguments permut.
Axiom exchange_permut : forall (a:Type), forall (a1:(array a)) (a2:(array a))
(i:Z) (j:Z), (exchange1 a1 a2 i j) -> (((length a1) = (length a2)) ->
(((0%Z <= i)%Z /\ (i < (length a1))%Z) -> (((0%Z <= j)%Z /\
(j < (length a1))%Z) -> (permut a1 a2)))).
Definition array_eq_sub (a:Type)(a1:(array a)) (a2:(array a)) (l:Z)
(u:Z): Prop := (map_eq_sub (elts a1) (elts a2) l u).
Implicit Arguments array_eq_sub.
Definition array_eq (a:Type)(a1:(array a)) (a2:(array a)): Prop :=
((length a1) = (length a2)) /\ (array_eq_sub a1 a2 0%Z (length a1)).
Implicit Arguments array_eq.
Axiom array_eq_sub_permut : forall (a:Type), forall (a1:(array a)) (a2:(array
a)) (l:Z) (u:Z), (array_eq_sub a1 a2 l u) -> (permut_sub1 a1 a2 l u).
Axiom array_eq_permut : forall (a:Type), forall (a1:(array a)) (a2:(array
a)), (array_eq a1 a2) -> (permut a1 a2).
Inductive color :=
| Blue : color