Commit 32dcb05e authored by MARCHE Claude's avatar MARCHE Claude
Browse files

blocking_semantics3 continued

parent 0fb80773
......@@ -713,10 +713,12 @@ predicate stmt_writes (s:stmt) (w:Set.set mident) =
(eval_fmla sigma pi (wp s p)) /\
(eval_fmla sigma pi (wp s q))
(*
lemma monotonicity:
forall s:stmt, p q:fmla.
valid_fmla (Fimplies p q)
-> valid_fmla (Fimplies (wp s p) (wp s q) )
*)
lemma wp_reduction:
forall sigma sigma':env, pi pi':stack, s s':stmt.
......
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below *)
Require Import BuiltIn.
Require BuiltIn.
Require int.Int.
Require int.MinMax.
(* Why3 assumption *)
Inductive list (a:Type) {a_WT:WhyType a} :=
| Nil : list a
| Cons : a -> (list a) -> list a.
Axiom list_WhyType : forall (a:Type) {a_WT:WhyType a}, WhyType (list a).
Existing Instance list_WhyType.
Implicit Arguments Nil [[a] [a_WT]].
Implicit Arguments Cons [[a] [a_WT]].
Axiom map : forall (a:Type) {a_WT:WhyType a} (b:Type) {b_WT:WhyType b}, Type.
Parameter map_WhyType : forall (a:Type) {a_WT:WhyType a}
(b:Type) {b_WT:WhyType b}, WhyType (map a b).
Existing Instance map_WhyType.
Parameter get: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
(map a b) -> a -> b.
Parameter set: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
(map a b) -> a -> b -> (map a b).
Axiom Select_eq : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
forall (m:(map a b)), forall (a1:a) (a2:a), forall (b1:b), (a1 = a2) ->
((get (set m a1 b1) a2) = b1).
Axiom Select_neq : forall {a:Type} {a_WT:WhyType a}
{b:Type} {b_WT:WhyType b}, forall (m:(map a b)), forall (a1:a) (a2:a),
forall (b1:b), (~ (a1 = a2)) -> ((get (set m a1 b1) a2) = (get m a2)).
Parameter const: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
b -> (map a b).
Axiom Const : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
forall (b1:b) (a1:a), ((get (const b1:(map a b)) a1) = b1).
(* Why3 assumption *)
Inductive datatype :=
| TYunit : datatype
| TYint : datatype
| TYbool : datatype .
Axiom datatype_WhyType : WhyType datatype.
Existing Instance datatype_WhyType.
(* Why3 assumption *)
Inductive value :=
| Vvoid : value
| Vint : Z -> value
| Vbool : bool -> value .
Axiom value_WhyType : WhyType value.
Existing Instance value_WhyType.
(* Why3 assumption *)
Inductive operator :=
| Oplus : operator
| Ominus : operator
| Omult : operator
| Ole : operator .
Axiom operator_WhyType : WhyType operator.
Existing Instance operator_WhyType.
Axiom mident : Type.
Parameter mident_WhyType : WhyType mident.
Existing Instance mident_WhyType.
(* Why3 assumption *)
Inductive ident :=
| mk_ident : Z -> ident .
Axiom ident_WhyType : WhyType ident.
Existing Instance ident_WhyType.
(* Why3 assumption *)
Definition ident_index(v:ident): Z := match v with
| (mk_ident x) => x
end.
(* Why3 assumption *)
Inductive term_node :=
| Tvalue : value -> term_node
| Tvar : ident -> term_node
| Tderef : mident -> term_node
| Tbin : term -> operator -> term -> term_node
with term :=
| mk_term : term_node -> Z -> term .
Axiom term_WhyType : WhyType term.
Existing Instance term_WhyType.
Axiom term_node_WhyType : WhyType term_node.
Existing Instance term_node_WhyType.
(* Why3 assumption *)
Definition term_maxvar(v:term): Z := match v with
| (mk_term x x1) => x1
end.
(* Why3 assumption *)
Definition term_node1(v:term): term_node :=
match v with
| (mk_term x x1) => x
end.
(* Why3 assumption *)
Fixpoint var_occurs_in_term(x:ident) (t:term) {struct t}: Prop :=
match t with
| (mk_term (Tvalue _) _) => False
| (mk_term (Tvar i) _) => (x = i)
| (mk_term (Tderef _) _) => False
| (mk_term (Tbin t1 _ t2) _) => (var_occurs_in_term x t1) \/
(var_occurs_in_term x t2)
end.
(* Why3 assumption *)
Definition term_inv(t:term): Prop := forall (x:ident), (var_occurs_in_term x
t) -> ((ident_index x) <= (term_maxvar t))%Z.
(* Why3 assumption *)
Definition mk_tvalue(v:value): term := (mk_term (Tvalue v) (-1%Z)%Z).
Axiom mk_tvalue_inv : forall (v:value), (term_inv (mk_tvalue v)).
(* Why3 assumption *)
Definition mk_tvar(i:ident): term := (mk_term (Tvar i) (ident_index i)).
Axiom mk_tvar_inv : forall (i:ident), (term_inv (mk_tvar i)).
(* Why3 assumption *)
Definition mk_tderef(r:mident): term := (mk_term (Tderef r) (-1%Z)%Z).
Axiom mk_tderef_inv : forall (r:mident), (term_inv (mk_tderef r)).
(* Why3 assumption *)
Definition mk_tbin(t1:term) (o:operator) (t2:term): term := (mk_term (Tbin t1
o t2) (Zmax (term_maxvar t1) (term_maxvar t2))).
Axiom mk_tbin_inv : forall (t1:term) (t2:term) (o:operator),
((term_inv t1) /\ (term_inv t2)) -> (term_inv (mk_tbin t1 o t2)).
(* Why3 assumption *)
Inductive fmla :=
| Fterm : term -> fmla
| Fand : fmla -> fmla -> fmla
| Fnot : fmla -> fmla
| Fimplies : fmla -> fmla -> fmla
| Flet : ident -> term -> fmla -> fmla
| Fforall : ident -> datatype -> fmla -> fmla .
Axiom fmla_WhyType : WhyType fmla.
Existing Instance fmla_WhyType.
(* Why3 assumption *)
Inductive stmt :=
| Sskip : stmt
| Sassign : mident -> term -> stmt
| Sseq : stmt -> stmt -> stmt
| Sif : term -> stmt -> stmt -> stmt
| Sassert : fmla -> stmt
| Swhile : term -> fmla -> stmt -> stmt .
Axiom stmt_WhyType : WhyType stmt.
Existing Instance stmt_WhyType.
Axiom decide_is_skip : forall (s:stmt), (s = Sskip) \/ ~ (s = Sskip).
(* Why3 assumption *)
Definition type_value(v:value): datatype :=
match v with
| Vvoid => TYunit
| (Vint int) => TYint
| (Vbool bool1) => TYbool
end.
(* Why3 assumption *)
Inductive type_operator : operator -> datatype -> datatype
-> datatype -> Prop :=
| Type_plus : (type_operator Oplus TYint TYint TYint)
| Type_minus : (type_operator Ominus TYint TYint TYint)
| Type_mult : (type_operator Omult TYint TYint TYint)
| Type_le : (type_operator Ole TYint TYint TYbool).
(* Why3 assumption *)
Definition type_stack := (list (ident* datatype)%type).
Parameter get_vartype: ident -> (list (ident* datatype)%type) -> datatype.
Axiom get_vartype_def : forall (i:ident) (pi:(list (ident* datatype)%type)),
match pi with
| Nil => ((get_vartype i pi) = TYunit)
| (Cons (x, ty) r) => ((x = i) -> ((get_vartype i pi) = ty)) /\
((~ (x = i)) -> ((get_vartype i pi) = (get_vartype i r)))
end.
(* Why3 assumption *)
Definition type_env := (map mident datatype).
(* Why3 assumption *)
Inductive type_term : (map mident datatype) -> (list (ident* datatype)%type)
-> term -> datatype -> Prop :=
| Type_value : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (v:value) (m:Z), (type_term sigma pi
(mk_term (Tvalue v) m) (type_value v))
| Type_var : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (v:ident) (m:Z) (ty:datatype), ((get_vartype v
pi) = ty) -> (type_term sigma pi (mk_term (Tvar v) m) ty)
| Type_deref : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (v:mident) (m:Z) (ty:datatype), ((get sigma
v) = ty) -> (type_term sigma pi (mk_term (Tderef v) m) ty)
| Type_bin : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (t1:term) (t2:term) (op:operator) (m:Z) (ty1:datatype)
(ty2:datatype) (ty:datatype), (type_term sigma pi t1 ty1) ->
((type_term sigma pi t2 ty2) -> ((type_operator op ty1 ty2 ty) ->
(type_term sigma pi (mk_term (Tbin t1 op t2) m) ty))).
(* Why3 assumption *)
Inductive type_fmla : (map mident datatype) -> (list (ident* datatype)%type)
-> fmla -> Prop :=
| Type_term : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (t:term), (type_term sigma pi t TYbool) ->
(type_fmla sigma pi (Fterm t))
| Type_conj : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (f1:fmla) (f2:fmla), (type_fmla sigma pi f1) ->
((type_fmla sigma pi f2) -> (type_fmla sigma pi (Fand f1 f2)))
| Type_neg : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (f:fmla), (type_fmla sigma pi f) -> (type_fmla sigma
pi (Fnot f))
| Type_implies : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (f1:fmla) (f2:fmla), (type_fmla sigma pi f1) ->
((type_fmla sigma pi f2) -> (type_fmla sigma pi (Fimplies f1 f2)))
| Type_let : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (x:ident) (t:term) (f:fmla) (ty:datatype),
(type_term sigma pi t ty) -> ((type_fmla sigma (Cons (x, ty) pi) f) ->
(type_fmla sigma pi (Flet x t f)))
| Type_forall1 : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (x:ident) (f:fmla), (type_fmla sigma (Cons (x, TYint)
pi) f) -> (type_fmla sigma pi (Fforall x TYint f))
| Type_forall2 : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (x:ident) (f:fmla), (type_fmla sigma (Cons (x, TYbool)
pi) f) -> (type_fmla sigma pi (Fforall x TYbool f))
| Type_forall3 : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (x:ident) (f:fmla), (type_fmla sigma (Cons (x, TYunit)
pi) f) -> (type_fmla sigma pi (Fforall x TYunit f)).
(* Why3 assumption *)
Inductive type_stmt : (map mident datatype) -> (list (ident* datatype)%type)
-> stmt -> Prop :=
| Type_skip : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)), (type_stmt sigma pi Sskip)
| Type_seq : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (s1:stmt) (s2:stmt), (type_stmt sigma pi s1) ->
((type_stmt sigma pi s2) -> (type_stmt sigma pi (Sseq s1 s2)))
| Type_assigns : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (x:mident) (t:term) (ty:datatype), ((get sigma
x) = ty) -> ((type_term sigma pi t ty) -> (type_stmt sigma pi
(Sassign x t)))
| Type_if : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (t:term) (s1:stmt) (s2:stmt), (type_term sigma pi t
TYbool) -> ((type_stmt sigma pi s1) -> ((type_stmt sigma pi s2) ->
(type_stmt sigma pi (Sif t s1 s2))))
| Type_assert : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (p:fmla), (type_fmla sigma pi p) -> (type_stmt sigma
pi (Sassert p))
| Type_while : forall (sigma:(map mident datatype)) (pi:(list (ident*
datatype)%type)) (guard:term) (body:stmt) (inv:fmla), (type_fmla sigma
pi inv) -> ((type_term sigma pi guard TYbool) -> ((type_stmt sigma pi
body) -> (type_stmt sigma pi (Swhile guard inv body)))).
(* Why3 assumption *)
Definition env := (map mident value).
(* Why3 assumption *)
Definition stack := (list (ident* value)%type).
Parameter get_stack: ident -> (list (ident* value)%type) -> value.
Axiom get_stack_def : forall (i:ident) (pi:(list (ident* value)%type)),
match pi with
| Nil => ((get_stack i pi) = Vvoid)
| (Cons (x, v) r) => ((x = i) -> ((get_stack i pi) = v)) /\ ((~ (x = i)) ->
((get_stack i pi) = (get_stack i r)))
end.
Axiom get_stack_eq : forall (x:ident) (v:value) (r:(list (ident*
value)%type)), ((get_stack x (Cons (x, v) r)) = v).
Axiom get_stack_neq : forall (x:ident) (i:ident) (v:value) (r:(list (ident*
value)%type)), (~ (x = i)) -> ((get_stack i (Cons (x, v) r)) = (get_stack i
r)).
Parameter eval_bin: value -> operator -> value -> value.
Axiom eval_bin_def : forall (x:value) (op:operator) (y:value), match (x,
y) with
| ((Vint x1), (Vint y1)) =>
match op with
| Oplus => ((eval_bin x op y) = (Vint (x1 + y1)%Z))
| Ominus => ((eval_bin x op y) = (Vint (x1 - y1)%Z))
| Omult => ((eval_bin x op y) = (Vint (x1 * y1)%Z))
| Ole => ((x1 <= y1)%Z -> ((eval_bin x op y) = (Vbool true))) /\
((~ (x1 <= y1)%Z) -> ((eval_bin x op y) = (Vbool false)))
end
| (_, _) => ((eval_bin x op y) = Vvoid)
end.
(* Why3 assumption *)
Fixpoint eval_term(sigma:(map mident value)) (pi:(list (ident* value)%type))
(t:term) {struct t}: value :=
match t with
| (mk_term (Tvalue v) _) => v
| (mk_term (Tvar id) _) => (get_stack id pi)
| (mk_term (Tderef id) _) => (get sigma id)
| (mk_term (Tbin t1 op t2) _) => (eval_bin (eval_term sigma pi t1) op
(eval_term sigma pi t2))
end.
(* Why3 goal *)
Theorem eval_bool_term : forall (sigma:(map mident value)) (pi:(list (ident*
value)%type)) (sigmat:(map mident datatype)) (pit:(list (ident*
datatype)%type)) (t:term), (type_term sigmat pit t TYbool) ->
exists b:bool, ((eval_term sigma pi t) = (Vbool b)).
intros sigma pi sigmat pit t h1.
inversion h1.
destruct v.
simpl in H3; discriminate.
simpl in H3; discriminate.
exists b; auto.
Qed.
......@@ -693,9 +693,6 @@ Axiom distrib_conj : forall (sigma:(map mident value)) (pi:(list (ident*
value)%type)) (s:stmt) (p:fmla) (q:fmla), (eval_fmla sigma pi (wp s (Fand p
q))) <-> ((eval_fmla sigma pi (wp s p)) /\ (eval_fmla sigma pi (wp s q))).
Axiom monotonicity : forall (s:stmt) (p:fmla) (q:fmla),
(valid_fmla (Fimplies p q)) -> (valid_fmla (Fimplies (wp s p) (wp s q))).
(* Why3 goal *)
Theorem wp_reduction : forall (sigma:(map mident value)) (sigma':(map mident
value)) (pi:(list (ident* value)%type)) (pi':(list (ident* value)%type))
......@@ -705,8 +702,11 @@ induction 1; intros q Hq.
(* case Sassign *)
simpl.
simpl in Hq.
noadmit.
(*
rewrite eval_msubst in Hq.
(* TODO *)
TODO *)
(* case Sseq *)
simpl.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment