Commit 265a349f by MARCHE Claude

### remove legitimate warning by turning axiom Bertrand into an unproved lemma

parent 832328e5
 ... ... @@ -17,7 +17,7 @@ Truly a tour de force, this proof includes the full proof of Bertrand's postulate in Coq. Here, we simply focus on the program verification part, assuming Bertrand's postulate as an axiom. posing Bertrand's postulate as a lemma that we do not prove. Note: Knuth's code is entering the loop where a new prime number is added, thus resulting into the immediate addition of 3 as prime[1]. ... ... @@ -55,7 +55,7 @@ module PrimeNumbers forall d: int. 2 <= d <= p[u-1] -> prime d -> exists i: int. 0 <= i < u /\ d = p[i] axiom Bertrand_postulate: lemma Bertrand_postulate: forall p: int. prime p -> not (no_prime_in p (2*p)) (* returns an array containing the first m prime numbers *) ... ...
 ... ... @@ -4,69 +4,71 @@ ... ... @@ -74,30 +76,30 @@ ... ... @@ -105,52 +107,52 @@ ... ... @@ -158,7 +160,7 @@ ... ... @@ -168,8 +170,7 @@ ... ... @@ -290,22 +291,22 @@ ... ... @@ -783,11 +784,11 @@ ... ... @@ -861,16 +862,16 @@ ... ... @@ -1152,20 +1153,20 @@ ... ... @@ -1174,8 +1175,7 @@ ... ... @@ -1296,22 +1296,22 @@ ... ... @@ -1789,11 +1789,11 @@ ... ... @@ -1867,16 +1867,16 @@ ... ... @@ -2158,19 +2158,19 @@ ... ... @@ -2182,19 +2182,19 @@ ... ...
No preview for this file type
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!