Maj terminée. Pour consulter la release notes associée voici le lien :
https://about.gitlab.com/releases/2021/07/07/critical-security-release-gitlab-14-0-4-released/

Commit 231fc690 authored by François Bobot's avatar François Bobot
Browse files

Ajout du module Map de la 3.12

parent 32e86890
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* $Id: map.ml 10468 2010-05-25 13:29:43Z frisch $ *)
module type OrderedType =
sig
type t
val compare: t -> t -> int
end
module type S =
sig
type key
type +'a t
val empty: 'a t
val is_empty: 'a t -> bool
val mem: key -> 'a t -> bool
val add: key -> 'a -> 'a t -> 'a t
val singleton: key -> 'a -> 'a t
val remove: key -> 'a t -> 'a t
val merge: (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
val iter: (key -> 'a -> unit) -> 'a t -> unit
val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val for_all: (key -> 'a -> bool) -> 'a t -> bool
val exists: (key -> 'a -> bool) -> 'a t -> bool
val filter: (key -> 'a -> bool) -> 'a t -> 'a t
val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
val cardinal: 'a t -> int
val bindings: 'a t -> (key * 'a) list
val min_binding: 'a t -> (key * 'a)
val max_binding: 'a t -> (key * 'a)
val choose: 'a t -> (key * 'a)
val split: key -> 'a t -> 'a t * 'a option * 'a t
val find: key -> 'a t -> 'a
val map: ('a -> 'b) -> 'a t -> 'b t
val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
end
module Make(Ord: OrderedType) = struct
type key = Ord.t
type 'a t =
Empty
| Node of 'a t * key * 'a * 'a t * int
let height = function
Empty -> 0
| Node(_,_,_,_,h) -> h
let create l x d r =
let hl = height l and hr = height r in
Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
let singleton x d = Node(Empty, x, d, Empty, 1)
let bal l x d r =
let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Map.bal"
| Node(ll, lv, ld, lr, _) ->
if height ll >= height lr then
create ll lv ld (create lr x d r)
else begin
match lr with
Empty -> invalid_arg "Map.bal"
| Node(lrl, lrv, lrd, lrr, _)->
create (create ll lv ld lrl) lrv lrd (create lrr x d r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Map.bal"
| Node(rl, rv, rd, rr, _) ->
if height rr >= height rl then
create (create l x d rl) rv rd rr
else begin
match rl with
Empty -> invalid_arg "Map.bal"
| Node(rll, rlv, rld, rlr, _) ->
create (create l x d rll) rlv rld (create rlr rv rd rr)
end
end else
Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let rec add x data = function
Empty ->
Node(Empty, x, data, Empty, 1)
| Node(l, v, d, r, h) ->
let c = Ord.compare x v in
if c = 0 then
Node(l, x, data, r, h)
else if c < 0 then
bal (add x data l) v d r
else
bal l v d (add x data r)
let rec find x = function
Empty ->
raise Not_found
| Node(l, v, d, r, _) ->
let c = Ord.compare x v in
if c = 0 then d
else find x (if c < 0 then l else r)
let rec mem x = function
Empty ->
false
| Node(l, v, d, r, _) ->
let c = Ord.compare x v in
c = 0 || mem x (if c < 0 then l else r)
let rec min_binding = function
Empty -> raise Not_found
| Node(Empty, x, d, r, _) -> (x, d)
| Node(l, x, d, r, _) -> min_binding l
let rec max_binding = function
Empty -> raise Not_found
| Node(l, x, d, Empty, _) -> (x, d)
| Node(l, x, d, r, _) -> max_binding r
let rec remove_min_binding = function
Empty -> invalid_arg "Map.remove_min_elt"
| Node(Empty, x, d, r, _) -> r
| Node(l, x, d, r, _) -> bal (remove_min_binding l) x d r
let merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
bal t1 x d (remove_min_binding t2)
let rec remove x = function
Empty ->
Empty
| Node(l, v, d, r, h) ->
let c = Ord.compare x v in
if c = 0 then
merge l r
else if c < 0 then
bal (remove x l) v d r
else
bal l v d (remove x r)
let rec iter f = function
Empty -> ()
| Node(l, v, d, r, _) ->
iter f l; f v d; iter f r
let rec map f = function
Empty ->
Empty
| Node(l, v, d, r, h) ->
let l' = map f l in
let d' = f d in
let r' = map f r in
Node(l', v, d', r', h)
let rec mapi f = function
Empty ->
Empty
| Node(l, v, d, r, h) ->
let l' = mapi f l in
let d' = f v d in
let r' = mapi f r in
Node(l', v, d', r', h)
let rec fold f m accu =
match m with
Empty -> accu
| Node(l, v, d, r, _) ->
fold f r (f v d (fold f l accu))
let rec for_all p = function
Empty -> true
| Node(l, v, d, r, _) -> p v d && for_all p l && for_all p r
let rec exists p = function
Empty -> false
| Node(l, v, d, r, _) -> p v d || exists p l || exists p r
let filter p s =
let rec filt accu = function
| Empty -> accu
| Node(l, v, d, r, _) ->
filt (filt (if p v d then add v d accu else accu) l) r in
filt Empty s
let partition p s =
let rec part (t, f as accu) = function
| Empty -> accu
| Node(l, v, d, r, _) ->
part (part (if p v d then (add v d t, f) else (t, add v d f)) l) r in
part (Empty, Empty) s
(* Same as create and bal, but no assumptions are made on the
relative heights of l and r. *)
let rec join l v d r =
match (l, r) with
(Empty, _) -> add v d r
| (_, Empty) -> add v d l
| (Node(ll, lv, ld, lr, lh), Node(rl, rv, rd, rr, rh)) ->
if lh > rh + 2 then bal ll lv ld (join lr v d r) else
if rh > lh + 2 then bal (join l v d rl) rv rd rr else
create l v d r
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
No assumption on the heights of l and r. *)
let concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
join t1 x d (remove_min_binding t2)
let concat_or_join t1 v d t2 =
match d with
| Some d -> join t1 v d t2
| None -> concat t1 t2
let rec split x = function
Empty ->
(Empty, None, Empty)
| Node(l, v, d, r, _) ->
let c = Ord.compare x v in
if c = 0 then (l, Some d, r)
else if c < 0 then
let (ll, pres, rl) = split x l in (ll, pres, join rl v d r)
else
let (lr, pres, rr) = split x r in (join l v d lr, pres, rr)
let rec merge f s1 s2 =
match (s1, s2) with
(Empty, Empty) -> Empty
| (Node (l1, v1, d1, r1, h1), _) when h1 >= height s2 ->
let (l2, d2, r2) = split v1 s2 in
concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2)
| (_, Node (l2, v2, d2, r2, h2)) ->
let (l1, d1, r1) = split v2 s1 in
concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2)
| _ ->
assert false
type 'a enumeration = End | More of key * 'a * 'a t * 'a enumeration
let rec cons_enum m e =
match m with
Empty -> e
| Node(l, v, d, r, _) -> cons_enum l (More(v, d, r, e))
let compare cmp m1 m2 =
let rec compare_aux e1 e2 =
match (e1, e2) with
(End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
let c = Ord.compare v1 v2 in
if c <> 0 then c else
let c = cmp d1 d2 in
if c <> 0 then c else
compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
in compare_aux (cons_enum m1 End) (cons_enum m2 End)
let equal cmp m1 m2 =
let rec equal_aux e1 e2 =
match (e1, e2) with
(End, End) -> true
| (End, _) -> false
| (_, End) -> false
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
Ord.compare v1 v2 = 0 && cmp d1 d2 &&
equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
in equal_aux (cons_enum m1 End) (cons_enum m2 End)
let rec cardinal = function
Empty -> 0
| Node(l, _, _, r, _) -> cardinal l + 1 + cardinal r
let rec bindings_aux accu = function
Empty -> accu
| Node(l, v, d, r, _) -> bindings_aux ((v, d) :: bindings_aux accu r) l
let bindings s =
bindings_aux [] s
let choose = min_binding
end
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* $Id: map.mli 10483 2010-05-31 12:48:13Z doligez $ *)
(** Association tables over ordered types.
This module implements applicative association tables, also known as
finite maps or dictionaries, given a total ordering function
over the keys.
All operations over maps are purely applicative (no side-effects).
The implementation uses balanced binary trees, and therefore searching
and insertion take time logarithmic in the size of the map.
*)
module type OrderedType =
sig
type t
(** The type of the map keys. *)
val compare : t -> t -> int
(** A total ordering function over the keys.
This is a two-argument function [f] such that
[f e1 e2] is zero if the keys [e1] and [e2] are equal,
[f e1 e2] is strictly negative if [e1] is smaller than [e2],
and [f e1 e2] is strictly positive if [e1] is greater than [e2].
Example: a suitable ordering function is the generic structural
comparison function {!Pervasives.compare}. *)
end
(** Input signature of the functor {!Map.Make}. *)
module type S =
sig
type key
(** The type of the map keys. *)
type (+'a) t
(** The type of maps from type [key] to type ['a]. *)
val empty: 'a t
(** The empty map. *)
val is_empty: 'a t -> bool
(** Test whether a map is empty or not. *)
val mem: key -> 'a t -> bool
(** [mem x m] returns [true] if [m] contains a binding for [x],
and [false] otherwise. *)
val add: key -> 'a -> 'a t -> 'a t
(** [add x y m] returns a map containing the same bindings as
[m], plus a binding of [x] to [y]. If [x] was already bound
in [m], its previous binding disappears. *)
val singleton: key -> 'a -> 'a t
(** [singleton x y] returns the one-element map that contains a binding [y]
for [x].
@since 3.12.0
*)
val remove: key -> 'a t -> 'a t
(** [remove x m] returns a map containing the same bindings as
[m], except for [x] which is unbound in the returned map. *)
val merge:
(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
(** [merge f m1 m2] computes a map whose keys is a subset of keys of [m1]
and of [m2]. The presence of each such binding, and the corresponding
value, is determined with the function [f].
@since 3.12.0
*)
val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
(** Total ordering between maps. The first argument is a total ordering
used to compare data associated with equal keys in the two maps. *)
val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
(** [equal cmp m1 m2] tests whether the maps [m1] and [m2] are
equal, that is, contain equal keys and associate them with
equal data. [cmp] is the equality predicate used to compare
the data associated with the keys. *)
val iter: (key -> 'a -> unit) -> 'a t -> unit
(** [iter f m] applies [f] to all bindings in map [m].
[f] receives the key as first argument, and the associated value
as second argument. The bindings are passed to [f] in increasing
order with respect to the ordering over the type of the keys. *)
val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
(** [fold f m a] computes [(f kN dN ... (f k1 d1 a)...)],
where [k1 ... kN] are the keys of all bindings in [m]
(in increasing order), and [d1 ... dN] are the associated data. *)
val for_all: (key -> 'a -> bool) -> 'a t -> bool
(** [for_all p m] checks if all the bindings of the map
satisfy the predicate [p].
@since 3.12.0
*)
val exists: (key -> 'a -> bool) -> 'a t -> bool
(** [exists p m] checks if at least one binding of the map
satisfy the predicate [p].
@since 3.12.0
*)
val filter: (key -> 'a -> bool) -> 'a t -> 'a t
(** [filter p m] returns the map with all the bindings in [m]
that satisfy predicate [p].
@since 3.12.0
*)
val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
(** [partition p m] returns a pair of maps [(m1, m2)], where
[m1] contains all the bindings of [s] that satisfy the
predicate [p], and [m2] is the map with all the bindings of
[s] that do not satisfy [p].
@since 3.12.0
*)
val cardinal: 'a t -> int
(** Return the number of bindings of a map.
@since 3.12.0
*)
val bindings: 'a t -> (key * 'a) list
(** Return the list of all bindings of the given map.
The returned list is sorted in increasing order with respect
to the ordering [Ord.compare], where [Ord] is the argument
given to {!Map.Make}.
@since 3.12.0
*)
val min_binding: 'a t -> (key * 'a)
(** Return the smallest binding of the given map
(with respect to the [Ord.compare] ordering), or raise
[Not_found] if the map is empty.
@since 3.12.0
*)
val max_binding: 'a t -> (key * 'a)
(** Same as {!Map.S.max_binding}, but returns the largest binding
of the given map.
@since 3.12.0
*)
val choose: 'a t -> (key * 'a)
(** Return one binding of the given map, or raise [Not_found] if
the map is empty. Which binding is chosen is unspecified,
but equal bindings will be chosen for equal maps.
@since 3.12.0
*)
val split: key -> 'a t -> 'a t * 'a option * 'a t
(** [split x m] returns a triple [(l, data, r)], where
[l] is the map with all the bindings of [m] whose key
is strictly less than [x];
[r] is the map with all the bindings of [m] whose key
is strictly greater than [x];
[data] is [None] if [m] contains no binding for [x],
or [Some v] if [m] binds [v] to [x].
@since 3.12.0
*)
val find: key -> 'a t -> 'a
(** [find x m] returns the current binding of [x] in [m],
or raises [Not_found] if no such binding exists. *)
val map: ('a -> 'b) -> 'a t -> 'b t
(** [map f m] returns a map with same domain as [m], where the
associated value [a] of all bindings of [m] has been
replaced by the result of the application of [f] to [a].
The bindings are passed to [f] in increasing order
with respect to the ordering over the type of the keys. *)
val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
(** Same as {!Map.S.map}, but the function receives as arguments both the
key and the associated value for each binding of the map. *)
end
(** Output signature of the functor {!Map.Make}. *)
module Make (Ord : OrderedType) : S with type key = Ord.t
(** Functor building an implementation of the map structure
given a totally ordered type. *)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment