mlw_typing.ml 38.4 KB
Newer Older
1 2
(**************************************************************************)
(*                                                                        *)
MARCHE Claude's avatar
MARCHE Claude committed
3
(*  Copyright (C) 2010-2012                                               *)
4 5 6
(*    François Bobot                                                      *)
(*    Jean-Christophe Filliâtre                                           *)
(*    Claude Marché                                                       *)
MARCHE Claude's avatar
MARCHE Claude committed
7
(*    Guillaume Melquiond                                                 *)
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
(*    Andrei Paskevich                                                    *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

open Why3
open Util
23
open Ident
24 25 26
open Ty
open Term
open Decl
27 28 29
open Theory
open Env
open Ptree
30
open Mlw_dtree
31
open Mlw_ty
32
open Mlw_ty.T
33 34
open Mlw_expr
open Mlw_decl
35
open Mlw_module
36
open Mlw_dty
37

38 39
(** errors *)

40
exception DuplicateProgVar of string
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
exception DuplicateTypeVar of string
(*
exception PredicateExpected
exception TermExpected
exception FSymExpected of lsymbol
exception PSymExpected of lsymbol
exception ClashTheory of string
exception UnboundTheory of qualid
exception UnboundType of string list
*)
exception UnboundTypeVar of string
exception UnboundSymbol of string list

let error = Loc.error
let errorm = Loc.errorm

let rec print_qualid fmt = function
  | Qident s -> Format.fprintf fmt "%s" s.id
  | Qdot (m, s) -> Format.fprintf fmt "%a.%s" print_qualid m s.id

let () = Exn_printer.register (fun fmt e -> match e with
  | DuplicateTypeVar s ->
63 64 65
      Format.fprintf fmt "Type parameter %s is used twice" s
  | DuplicateProgVar s ->
      Format.fprintf fmt "Parameter %s is used twice" s
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
(*
  | PredicateExpected ->
      Format.fprintf fmt "syntax error: predicate expected"
  | TermExpected ->
      Format.fprintf fmt "syntax error: term expected"
  | FSymExpected ls ->
      Format.fprintf fmt "%a is not a function symbol" Pretty.print_ls ls
  | PSymExpected ls ->
      Format.fprintf fmt "%a is not a predicate symbol" Pretty.print_ls ls
  | ClashTheory s ->
      Format.fprintf fmt "Clash with previous theory %s" s
  | UnboundTheory q ->
      Format.fprintf fmt "unbound theory %a" print_qualid q
  | UnboundType sl ->
      Format.fprintf fmt "Unbound type '%a'"
        (Pp.print_list Pp.dot Pp.pp_print_string) sl
*)
  | UnboundTypeVar s ->
      Format.fprintf fmt "unbound type variable '%s" s
  | UnboundSymbol sl ->
      Format.fprintf fmt "Unbound symbol '%a'"
        (Pp.print_list Pp.dot Format.pp_print_string) sl
  | _ -> raise e)

(* TODO: let type_only = Debug.test_flag Typing.debug_type_only in *)

92 93 94 95 96 97
type denv = {
  uc     : module_uc;
  locals : (tvars * dity) Mstr.t;
  tvars  : tvars;
  denv   : Typing.denv; (* for user type variables only *)
}
98

99 100 101 102 103
let create_denv uc =
  { uc = uc;
    locals = Mstr.empty;
    tvars = empty_tvars;
    denv = Typing.create_denv (); }
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
(** Typing type expressions *)

let rec dity_of_pty ~user denv = function
  | Ptree.PPTtyvar id ->
      create_user_type_variable id
  | Ptree.PPTtyapp (pl, p) ->
      let dl = List.map (dity_of_pty ~user denv) pl in
      let x = Typing.string_list_of_qualid [] p in
      begin
        try
          let its = ns_find_it (get_namespace denv.uc) x in
          its_app ~user its dl
        with Not_found -> try
          let ts = ns_find_ts (Theory.get_namespace (get_theory denv.uc)) x in
          ts_app ts dl
        with Not_found ->
          let loc = Typing.qloc p in
          errorm ~loc "unbound symbol %a" Typing.print_qualid p
      end
  | Ptree.PPTtuple pl ->
      ts_app (ts_tuple (List.length pl)) (List.map (dity_of_pty ~user denv) pl)
126 127 128

(** Typing program expressions *)

129 130
let dity_int  = ts_app ts_int []
let dity_real = ts_app ts_real []
131
let dity_bool = ts_app ts_bool []
132
let dity_unit = ts_app (ts_tuple 0) []
133 134 135 136

let expected_type e dity =
  unify e.dexpr_type dity

137 138 139 140 141 142 143 144
let rec extract_labels labs loc e = match e.Ptree.expr_desc with
  | Ptree.Enamed (Ptree.Lstr s, e) -> extract_labels (s :: labs) loc e
  | Ptree.Enamed (Ptree.Lpos p, e) -> extract_labels labs (Some p) e
  | Ptree.Ecast  (e, ty) ->
      let labs, loc, d = extract_labels labs loc e in
      labs, loc, Ptree.Ecast ({ e with Ptree.expr_desc = d }, ty)
  | e -> List.rev labs, loc, e

145 146 147
let rec decompose_app args e = match e.Ptree.expr_desc with
  | Eapply (e1, e2) -> decompose_app (e2 :: args) e1
  | _ -> e, args
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
(* record parsing *)

let parse_record uc fll =
  let pl = match fll with
    | [] -> raise EmptyRecord
    | (pl,_)::_ -> pl in
  let its = match pl.pl_args with
    | [{ vtv_ity = { ity_node = Ityapp (its,_,_) }}] -> its
    | _ -> raise (BadRecordField pl.pl_ls) in
  let cs, pjl = match find_constructors (get_known uc) its with
    | [cs,pjl] -> cs, List.map (exn_option (BadRecordField pl.pl_ls)) pjl
    | _ -> raise (BadRecordField pl.pl_ls) in
  let pjs = List.fold_left (fun s pj -> Sls.add pj.pl_ls s) Sls.empty pjl in
  let flm = List.fold_left (fun m (pj,v) -> let pj = pj.pl_ls in
    if not (Sls.mem pj pjs) then raise (BadRecordField pj) else
      Mls.add_new (DuplicateRecordField (cs.pl_ls,pj)) pj v m)
    Mls.empty fll
  in
  cs,pjl,flm

let find_field ~loc uc (p,e) =
  let x = Typing.string_list_of_qualid [] p in
  try match ns_find_ps (get_namespace uc) x with
    | PL pl -> (pl,e)
    | PV _ | PS _ -> errorm ~loc "bad record field %a" Typing.print_qualid p
  with Not_found -> errorm ~loc "unbound symbol %a" Typing.print_qualid p

let find_pure_field ~loc uc (p,e) =
  let x = Typing.string_list_of_qualid [] p in
  try ns_find_ls (Theory.get_namespace (get_theory uc)) x, e
  with Not_found -> errorm ~loc "unbound symbol %a" Typing.print_qualid p

let pure_record ~loc uc = function
  | [] -> error ~loc Decl.EmptyRecord
  | (p,_)::_ ->
      let x = Typing.string_list_of_qualid [] p in
      begin try ignore (ns_find_ps (get_namespace uc) x); false
      with Not_found -> true end

let hidden_pl ~loc pl =
  { dexpr_desc = DEglobal_pl pl;
    dexpr_type = specialize_plsymbol pl;
    dexpr_loc  = loc; dexpr_lab = [] }

let hidden_ls ~loc ls =
  { dexpr_desc = DEglobal_ls ls;
    dexpr_type = specialize_lsymbol ls;
    dexpr_loc  = loc; dexpr_lab = [] }

(* helper functions for let-expansion *)
let test_var e = match e.dexpr_desc with
  | DElocal _ | DEglobal_pv _ -> true
  | _ -> false

let mk_var e =
  if test_var e then e else
  { dexpr_desc = DElocal "q";
    dexpr_type = e.dexpr_type;
    dexpr_loc  = e.dexpr_loc;
    dexpr_lab  = [] }

let mk_let ~loc ~userloc e (desc,dity) =
  if test_var e then desc, dity else
  let loc = def_option loc userloc in
  let e1 = {
    dexpr_desc = desc; dexpr_type = dity; dexpr_loc = loc; dexpr_lab = [] } in
  DElet ({ id = "q"; id_lab = []; id_loc = loc }, e, e1), dity

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
(* patterns *)
let id_user x = id_user x.id x.id_loc

let add_var id dity denv =
  let tvars = add_tvars denv.tvars dity in
  let locals = Mstr.add id.id (tvars,dity) denv.locals in
  { denv with locals = locals; tvars = tvars }

let specialize_qualid ~loc uc p =
  let x = Typing.string_list_of_qualid [] p in
  try match ns_find_ps (get_namespace uc) x with
    | PV pv -> DEglobal_pv pv, specialize_pvsymbol pv
    | PS ps -> DEglobal_ps ps, specialize_psymbol  ps
    | PL pl -> DEglobal_pl pl, specialize_plsymbol pl
  with Not_found -> try
    let ls = ns_find_ls (Theory.get_namespace (get_theory uc)) x in
    DEglobal_ls ls, specialize_lsymbol ls
  with Not_found ->
    errorm ~loc "unbound symbol %a" Typing.print_qualid p

let mk_dexpr desc dity loc labs =
  { dexpr_desc = desc; dexpr_type = dity; dexpr_loc = loc; dexpr_lab = labs }

let rec dpattern denv ({ pat_loc = loc } as pp) = match pp.pat_desc with
  | Ptree.PPpwild ->
      PPwild, create_type_variable (), denv
  | Ptree.PPpvar id ->
      let dity = create_type_variable () in
      PPvar (id_user id), dity, add_var id dity denv
  | Ptree.PPpapp (q,ppl) ->
      let sym, dity = specialize_qualid ~loc denv.uc q in
      dpat_app denv (mk_dexpr sym dity loc []) ppl
  | Ptree.PPprec fl when pure_record ~loc denv.uc fl ->
      let kn = Theory.get_known (get_theory denv.uc) in
      let fl = List.map (find_pure_field ~loc denv.uc) fl in
      let cs,pjl,flm = Loc.try2 loc Decl.parse_record kn fl in
      let wild = { pat_desc = Ptree.PPpwild; pat_loc = loc } in
      let get_val pj = Mls.find_def wild pj flm in
      dpat_app denv (hidden_ls ~loc cs) (List.map get_val pjl)
  | Ptree.PPprec fl ->
      let fl = List.map (find_field ~loc denv.uc) fl in
      let cs,pjl,flm = Loc.try2 loc parse_record denv.uc fl in
      let wild = { pat_desc = Ptree.PPpwild; pat_loc = loc } in
      let get_val pj = Mls.find_def wild pj.pl_ls flm in
      dpat_app denv (hidden_pl ~loc cs) (List.map get_val pjl)
  | Ptree.PPptuple ppl ->
      let cs = fs_tuple (List.length ppl) in
      dpat_app denv (hidden_ls ~loc cs) ppl
  | Ptree.PPpor (pp1, pp2) ->
      let pp1, dity1, denv = dpattern denv pp1 in
      let pp2, dity2, denv = dpattern denv pp2 in
      Loc.try2 loc unify dity1 dity2;
      PPor (pp1, pp2), dity1, denv
  | Ptree.PPpas (pp, id) ->
      let pp, dity, denv = dpattern denv pp in
      PPas (pp, id_user id), dity, add_var id dity denv

and dpat_app denv ({ dexpr_loc = loc } as de) ppl =
  let add_pp pp (ppl, tyl, denv) =
    let pp,ty,denv = dpattern denv pp in pp::ppl,ty::tyl,denv in
  let ppl, tyl, denv = List.fold_right add_pp ppl ([],[],denv) in
  let pp = match de.dexpr_desc with
    | DEglobal_pl pl -> Mlw_expr.PPpapp (pl, ppl)
    | DEglobal_ls ls -> PPlapp (ls, ppl)
    | DEglobal_pv pv ->
        errorm ~loc "%a is not a constructor" Mlw_pretty.print_pv pv
    | DEglobal_ps ps ->
        errorm ~loc "%a is not a constructor" Mlw_pretty.print_ps ps
    | _ -> assert false
  in
  let res = create_type_variable () in
  Loc.try2 loc unify de.dexpr_type (make_arrow_type tyl res);
  pp, res, denv

291 292 293 294 295
(* value restriction *)
let rec is_fun e = match e.dexpr_desc with
  | DEfun _ -> true
  | DEmark (_, e) -> is_fun e
  | _ -> false
296

297 298 299 300 301 302
let dexpr_app e el =
  let res = create_type_variable () in
  let tyl = List.map (fun a -> a.dexpr_type) el in
  expected_type e (make_arrow_type tyl res);
  DEapply (e, el), res

303 304 305 306 307
let rec dexpr ~userloc denv e =
  let loc = e.Ptree.expr_loc in
  let labs, userloc, d = extract_labels [] userloc e in
  let d, ty = dexpr_desc ~userloc denv loc d in
  let loc = def_option loc userloc in
308
  mk_dexpr d ty loc labs
309

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
310
and dexpr_desc ~userloc denv loc = function
311 312
  | Ptree.Eident (Qident {id=x}) when Mstr.mem x denv.locals ->
      (* local variable *)
313 314 315
      let tvs, dity = Mstr.find x denv.locals in
      let dity = specialize_scheme tvs dity in
      DElocal x, dity
316
  | Ptree.Eident p ->
317
      specialize_qualid ~loc denv.uc p
318 319 320
  | Ptree.Eapply (e1, e2) ->
      let e, el = decompose_app [e2] e1 in
      let el = List.map (dexpr ~userloc denv) el in
321
      dexpr_app (dexpr ~userloc denv e) el
322 323
  | Ptree.Elet (id, e1, e2) ->
      let e1 = dexpr ~userloc denv e1 in
324 325 326 327
      let dity = e1.dexpr_type in
      let tvars = if is_fun e1 then denv.tvars else add_tvars denv.tvars dity in
      let locals = Mstr.add id.id (tvars, dity) denv.locals in
      let denv = { denv with locals = locals; tvars = tvars } in
328 329
      let e2 = dexpr ~userloc denv e2 in
      DElet (id, e1, e2), e2.dexpr_type
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
330 331 332 333
  | Ptree.Efun (bl, tr) ->
      let dbinder denv (id, pty) =
        let dity = match pty with
          | Some pty -> dity_of_pty ~user:false denv pty
334 335
          | None -> create_type_variable () in
        add_var id dity denv, (id, false, dity) in
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
336 337 338 339 340
      let denv, bl = Util.map_fold_left dbinder denv bl in
      let _,e,_ as tr = dtriple ~userloc denv tr in
      let dity =
        make_arrow_type (List.map (fun (_,_,d) -> d) bl) e.dexpr_type in
      DEfun (bl, tr), dity
341 342
  | Ptree.Ecast (e1, pty) ->
      let e1 = dexpr ~userloc denv e1 in
343
      expected_type e1 (dity_of_pty ~user:false denv pty);
344 345 346
      e1.dexpr_desc, e1.dexpr_type
  | Ptree.Enamed _ ->
      assert false
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
  | Ptree.Esequence (e1, e2) ->
      let e1 = dexpr ~userloc denv e1 in
      expected_type e1 dity_unit;
      let e2 = dexpr ~userloc denv e2 in
      DElet ({ id = "_"; id_lab = []; id_loc = loc }, e1, e2), e2.dexpr_type
  | Ptree.Eif (e1, e2, e3) ->
      let e1 = dexpr ~userloc denv e1 in
      expected_type e1 dity_bool;
      let e2 = dexpr ~userloc denv e2 in
      let e3 = dexpr ~userloc denv e3 in
      expected_type e3 e2.dexpr_type;
      DEif (e1, e2, e3), e2.dexpr_type
  | Ptree.Etuple el ->
      let ls = fs_tuple (List.length el) in
      let el = List.map (dexpr ~userloc denv) el in
      dexpr_app (hidden_ls ~loc ls) el
  | Ptree.Erecord fl when pure_record ~loc denv.uc fl ->
      let kn = Theory.get_known (get_theory denv.uc) in
      let fl = List.map (find_pure_field ~loc denv.uc) fl in
      let cs,pjl,flm = Loc.try2 loc Decl.parse_record kn fl in
      let get_val pj = match Mls.find_opt pj flm with
        | Some e -> dexpr ~userloc denv e
        | None -> error ~loc (Decl.RecordFieldMissing (cs,pj)) in
      dexpr_app (hidden_ls ~loc cs) (List.map get_val pjl)
  | Ptree.Erecord fl ->
      let fl = List.map (find_field ~loc denv.uc) fl in
      let cs,pjl,flm = Loc.try2 loc parse_record denv.uc fl in
      let get_val pj = match Mls.find_opt pj.pl_ls flm with
        | Some e -> dexpr ~userloc denv e
        | None -> error ~loc (Decl.RecordFieldMissing (cs.pl_ls,pj.pl_ls)) in
      dexpr_app (hidden_pl ~loc cs) (List.map get_val pjl)
  | Ptree.Eupdate (e1, fl) when pure_record ~loc denv.uc fl ->
      let e1 = dexpr ~userloc denv e1 in
      let e0 = mk_var e1 in
      let kn = Theory.get_known (get_theory denv.uc) in
      let fl = List.map (find_pure_field ~loc denv.uc) fl in
      let cs,pjl,flm = Loc.try2 loc Decl.parse_record kn fl in
      let get_val pj = match Mls.find_opt pj flm with
        | Some e -> dexpr ~userloc denv e
        | None ->
387 388
            let d, dity = dexpr_app (hidden_ls ~loc pj) [e0] in
            mk_dexpr d dity loc [] in
389 390 391 392 393 394 395 396 397 398
      let res = dexpr_app (hidden_ls ~loc cs) (List.map get_val pjl) in
      mk_let ~loc ~userloc e1 res
  | Ptree.Eupdate (e1, fl) ->
      let e1 = dexpr ~userloc denv e1 in
      let e0 = mk_var e1 in
      let fl = List.map (find_field ~loc denv.uc) fl in
      let cs,pjl,flm = Loc.try2 loc parse_record denv.uc fl in
      let get_val pj = match Mls.find_opt pj.pl_ls flm with
        | Some e -> dexpr ~userloc denv e
        | None ->
399 400
            let d, dity = dexpr_app (hidden_pl ~loc pj) [e0] in
            mk_dexpr d dity loc [] in
401 402
      let res = dexpr_app (hidden_pl ~loc cs) (List.map get_val pjl) in
      mk_let ~loc ~userloc e1 res
Andrei Paskevich's avatar
Andrei Paskevich committed
403
  | Ptree.Eassign (e1, q, e2) ->
404 405
      let fl = { expr_desc = Eident q; expr_loc = loc } in
      let e1 = { expr_desc = Eapply (fl,e1); expr_loc = loc } in
Andrei Paskevich's avatar
Andrei Paskevich committed
406 407 408 409
      let e1 = dexpr ~userloc denv e1 in
      let e2 = dexpr ~userloc denv e2 in
      expected_type e2 e1.dexpr_type;
      DEassign (e1, e2), dity_unit
410 411 412 413 414 415 416 417 418 419 420 421 422 423
  | Ptree.Econstant (ConstInt _ as c) ->
      DEconstant c, dity_int
  | Ptree.Econstant (ConstReal _ as c) ->
      DEconstant c, dity_real
  | Ptree.Enot e1 ->
      let e1 = dexpr ~userloc denv e1 in
      expected_type e1 dity_bool;
      DEnot e1, dity_bool
  | Ptree.Elazy (op, e1, e2) ->
      let e1 = dexpr ~userloc denv e1 in
      let e2 = dexpr ~userloc denv e2 in
      expected_type e1 dity_bool;
      expected_type e2 dity_bool;
      DElazy (op, e1, e2), dity_bool
424 425 426 427 428 429 430 431 432 433
  | Ptree.Ematch (e1, bl) ->
      let e1 = dexpr ~userloc denv e1 in
      let res = create_type_variable () in
      let branch (pp,e) =
        let ppat, dity, denv = dpattern denv pp in
        let e = dexpr ~userloc denv e in
        Loc.try2 pp.pat_loc unify dity e1.dexpr_type;
        expected_type e res;
        ppat, e in
      DEmatch (e1, List.map branch bl), res
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
  | Ptree.Eletrec (_rdl, _e1) ->
      assert false (*TODO*)
  | Ptree.Eloop (_ann, _e1) ->
      assert false (*TODO*)
  | Ptree.Eabsurd ->
      assert false (*TODO*)
  | Ptree.Eraise (_q, _e1) ->
      assert false (*TODO*)
  | Ptree.Etry (_e1, _cl) ->
      assert false (*TODO*)
  | Ptree.Efor (_id, _e1, _dir, _e2, _lexpr_opt, _e3) ->
      assert false (*TODO*)
  | Ptree.Eassert (_ass, _lexpr) ->
      assert false (*TODO*)
  | Ptree.Emark (_id, _e1) ->
      assert false (*TODO*)
  | Ptree.Eany (_type_c) ->
      assert false (*TODO*)
  | Ptree.Eabstract (_e1, _post) ->
453 454
      assert false (*TODO*)

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
455 456 457 458 459 460 461 462
and dtriple ~userloc denv (p, e, q) =
  let e = dexpr ~userloc denv e in
  let q = dpost denv q in
  p, e, q

and dpost _denv (q, _ql) =
  q, [] (* TODO *)

463
let rec expr locals de = match de.dexpr_desc with
464 465 466
  | DElocal x ->
      assert (Mstr.mem x locals);
      begin match Mstr.find x locals with
467 468
      | LetV pv -> e_value pv
      | LetA ps -> e_cast ps (vty_of_dity de.dexpr_type)
469
      end
470 471 472 473 474 475
  | DElet (x, { dexpr_desc = DEfun (bl, tr) }, de2) ->
      let def1 = expr_fun locals x bl tr in
      let locals = Mstr.add x.id (LetA def1.rec_ps) locals in
      let e2 = expr locals de2 in
      e_rec [def1] e2
  | DEfun (bl, tr) ->
Andrei Paskevich's avatar
Andrei Paskevich committed
476
      let x = { id = "fn"; id_loc = de.dexpr_loc; id_lab = [] } in
477 478 479 480 481 482 483 484 485
      let def = expr_fun locals x bl tr in
      let e2 = e_cast def.rec_ps (VTarrow def.rec_ps.ps_vta) in
      e_rec [def] e2
  | DElet (x, de1, de2) ->
      let e1 = expr locals de1 in
      let def1 = create_let_defn (id_user x) e1 in
      let locals = Mstr.add x.id def1.let_var locals in
      let e2 = expr locals de2 in
      e_let def1 e2
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
486 487 488 489 490
  | DEapply (de1, del) ->
      let el = List.map (expr locals) del in
      begin match de1.dexpr_desc with
        | DEglobal_pl pls -> e_plapp pls el (ity_of_dity de.dexpr_type)
        | DEglobal_ls ls  -> e_lapp  ls  el (ity_of_dity de.dexpr_type)
Andrei Paskevich's avatar
Andrei Paskevich committed
491
        | _               -> e_app (expr locals de1) el
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
492
      end
493 494 495 496
  | DEglobal_pv pv ->
      e_value pv
  | DEglobal_ps ps ->
      e_cast ps (vty_of_dity de.dexpr_type)
Andrei Paskevich's avatar
Andrei Paskevich committed
497 498 499
  | DEglobal_pl pl ->
      assert (pl.pl_ls.ls_args = []);
      e_plapp pl [] (ity_of_dity de.dexpr_type)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
500
  | DEglobal_ls ls ->
Andrei Paskevich's avatar
Andrei Paskevich committed
501
      assert (ls.ls_args = []);
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
502
      e_lapp ls [] (ity_of_dity de.dexpr_type)
503 504
  | DEif (de1, de2, de3) ->
      e_if (expr locals de1) (expr locals de2) (expr locals de3)
Andrei Paskevich's avatar
Andrei Paskevich committed
505 506
  | DEassign (de1, de2) ->
      e_assign (expr locals de1) (expr locals de2)
507 508 509 510 511 512 513 514
  | DEconstant c ->
      e_const c
  | DElazy (LazyAnd, de1, de2) ->
      e_lazy_and (expr locals de1) (expr locals de2)
  | DElazy (LazyOr, de1, de2) ->
      e_lazy_or (expr locals de1) (expr locals de2)
  | DEnot de1 ->
      e_not (expr locals de1)
515 516 517 518 519 520 521 522
  | DEmatch (de1, bl) ->
      let e1 = expr locals de1 in
      let vtv = vtv_of_expr e1 in
      let branch (pp,de) =
        let vm, pp = make_ppattern pp vtv in
        let locals = Mstr.fold (fun s pv -> Mstr.add s (LetV pv)) vm locals in
        pp, expr locals de in
      e_case e1 (List.map branch bl)
523 524 525
  | _ ->
      assert false (*TODO*)

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
and expr_fun locals x bl (_, e1, _) =
  let binder (id, ghost, dity) =
    let vtv = vty_value ~ghost (ity_of_dity dity) in
    create_pvsymbol (id_user id) vtv in
  let pvl = List.map binder bl in
  let add_binder pv = Mstr.add pv.pv_vs.vs_name.id_string (LetV pv) in
  let locals' = List.fold_right add_binder pvl locals in
  let e1 = expr locals' e1 in
  let ty1 = match e1.e_vty with
    | VTarrow _ -> ty_tuple []
    | VTvalue vtv -> ty_of_ity vtv.vtv_ity in
  let res1 = create_vsymbol (id_fresh "result") ty1 in
  let lam = {
    l_args = pvl;
    l_variant = [];
    l_pre = t_true;                   (* TODO *)
    l_expr = e1;
    l_post = create_post res1 t_true; (* TODO *)
    l_xpost = Mexn.empty;             (* TODO *)
Andrei Paskevich's avatar
Andrei Paskevich committed
545
  } in
546 547
  create_fun_defn (id_user x) lam

548 549
(** Type declaration *)

550
type tys = ProgTS of itysymbol | PureTS of tysymbol
551 552 553 554 555 556 557 558 559

let find_tysymbol q uc =
  let loc = Typing.qloc q in
  let sl = Typing.string_list_of_qualid [] q in
  try ProgTS (ns_find_it (get_namespace uc) sl)
  with Not_found ->
  try PureTS (ns_find_ts (Theory.get_namespace (get_theory uc)) sl)
  with Not_found -> error ~loc (UnboundSymbol sl)

560 561 562
let look_for_loc tdl s =
  let look_id loc id = if id.id = s then Some id.id_loc else loc in
  let look_pj loc (id,_) = option_fold look_id loc id in
563 564 565
  let look_cs loc (csloc,id,pjl) =
    let loc = if id.id = s then Some csloc else loc in
    List.fold_left look_pj loc pjl in
566 567 568 569 570 571 572 573 574 575
  let look_fl loc f = look_id loc f.f_ident in
  let look loc d =
    let loc = look_id loc d.td_ident in
    match d.td_def with
      | TDabstract | TDalias _ -> loc
      | TDalgebraic csl -> List.fold_left look_cs loc csl
      | TDrecord fl -> List.fold_left look_fl loc fl
  in
  List.fold_left look None tdl

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
let add_types uc tdl =
  let add m d =
    let id = d.td_ident.id in
    Mstr.add_new (Loc.Located (d.td_loc, ClashSymbol id)) id d m in
  let def = List.fold_left add Mstr.empty tdl in

  (* detect cycles *)

  let rec cyc_visit x d seen = match Mstr.find_opt x seen with
    | Some true -> seen
    | Some false -> errorm ~loc:d.td_loc "Cyclic type definition"
    | None ->
        let ts_seen seen = function
          | Qident { id = x } ->
              begin try cyc_visit x (Mstr.find x def) seen
              with Not_found -> seen end
          | _ -> seen in
        let rec check seen = function
          | PPTtyvar _ -> seen
          | PPTtyapp (tyl,q) -> List.fold_left check (ts_seen seen q) tyl
          | PPTtuple tyl -> List.fold_left check seen tyl in
        let seen = match d.td_def with
          | TDabstract | TDalgebraic _ | TDrecord _ -> seen
          | TDalias ty -> check (Mstr.add x false seen) ty in
        Mstr.add x true seen in
  ignore (Mstr.fold cyc_visit def Mstr.empty);

  (* detect mutable types *)

  let mutables = Hashtbl.create 5 in
  let rec mut_visit x =
    try Hashtbl.find mutables x
    with Not_found ->
      let ts_mut = function
        | Qident { id = x } when Mstr.mem x def -> mut_visit x
        | q ->
            begin match find_tysymbol q uc with
              | ProgTS s -> s.its_regs <> []
              | PureTS _ -> false end in
      let rec check = function
        | PPTtyvar _ -> false
        | PPTtyapp (tyl,q) -> ts_mut q || List.exists check tyl
        | PPTtuple tyl -> List.exists check tyl in
      Hashtbl.replace mutables x false;
      let mut = match (Mstr.find x def).td_def with
        | TDabstract -> false
        | TDalias ty -> check ty
        | TDalgebraic csl ->
            let proj (_,pty) = check pty in
            List.exists (fun (_,_,l) -> List.exists proj l) csl
        | TDrecord fl ->
            let field f = f.f_mutable || check f.f_pty in
            List.exists field fl in
      Hashtbl.replace mutables x mut;
      mut
  in
  Mstr.iter (fun x _ -> ignore (mut_visit x)) def;

  (* create type symbols and predefinitions for mutable types *)

  let tysymbols = Hashtbl.create 5 in
  let predefs = Hashtbl.create 5 in
  let rec its_visit x =
    try match Hashtbl.find tysymbols x with
      | Some ts -> ts
      | None ->
          let loc = (Mstr.find x def).td_loc in
          errorm ~loc "Mutable type in a recursive type definition"
    with Not_found ->
      let d = Mstr.find x def in
      let add_tv acc id =
        let e = Loc.Located (id.id_loc, DuplicateTypeVar id.id) in
648
        let tv = create_tvsymbol (Denv.create_user_id id) in
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
        Mstr.add_new e id.id tv acc in
      let vars = List.fold_left add_tv Mstr.empty d.td_params in
      let vl = List.map (fun id -> Mstr.find id.id vars) d.td_params in
      let id = Denv.create_user_id d.td_ident in
      let abst = d.td_vis = Abstract in
      let priv = d.td_vis = Private in
      Hashtbl.add tysymbols x None;
      let get_ts = function
        | Qident { id = x } when Mstr.mem x def -> ProgTS (its_visit x)
        | q -> find_tysymbol q uc
      in
      let rec parse = function
        | PPTtyvar { id = v ; id_loc = loc } ->
            let e = Loc.Located (loc, UnboundTypeVar v) in
            ity_var (Mstr.find_exn e v vars)
        | PPTtyapp (tyl,q) ->
            let tyl = List.map parse tyl in
            begin match get_ts q with
              | PureTS ts -> Loc.try2 (Typing.qloc q) ity_pur ts tyl
              | ProgTS ts -> Loc.try2 (Typing.qloc q) ity_app_fresh ts tyl
            end
        | PPTtuple tyl ->
671
            let ts = ts_tuple (List.length tyl) in
672 673 674 675 676
            ity_pur ts (List.map parse tyl)
      in
      let ts = match d.td_def with
        | TDalias ty ->
            let def = parse ty in
677 678
            let rl = Sreg.elements def.ity_vars.vars_reg in
            create_itysymbol id ~abst ~priv vl rl (Some def)
679
        | TDalgebraic csl when Hashtbl.find mutables x ->
680 681 682 683 684 685
            let projs = Hashtbl.create 5 in
            (* to check projections' types we must fix the tyvars *)
            let add s v = let t = ity_var v in ity_match s t t in
            let sbs = List.fold_left add ity_subst_empty vl in
            let mk_proj s (id,pty) =
              let ity = parse pty in
686
              let vtv = vty_value ity in
687 688
              match id with
                | None ->
689
                    let pv = create_pvsymbol (id_fresh "pj") vtv in
690
                    Sreg.union s ity.ity_vars.vars_reg, (pv, false)
691 692 693
                | Some id ->
                    try
                      let pv = Hashtbl.find projs id.id in
694
                      let ty = pv.pv_vtv.vtv_ity in
695 696
                      (* once we have ghost/mutable fields in algebraics,
                         don't forget to check here that they coincide, too *)
697
                      ignore (Loc.try3 id.id_loc ity_match sbs ty ity);
698 699
                      s, (pv, true)
                    with Not_found ->
700
                      let pv = create_pvsymbol (Denv.create_user_id id) vtv in
701
                      Hashtbl.replace projs id.id pv;
702
                      Sreg.union s ity.ity_vars.vars_reg, (pv, true)
703 704 705 706 707 708
            in
            let mk_constr s (_loc,cid,pjl) =
              let s,pjl = Util.map_fold_left mk_proj s pjl in
              s, (Denv.create_user_id cid, pjl)
            in
            let s,def = Util.map_fold_left mk_constr Sreg.empty csl in
709
            Hashtbl.replace predefs x def;
710
            create_itysymbol id ~abst ~priv vl (Sreg.elements s) None
711
        | TDrecord fl when Hashtbl.find mutables x ->
712 713 714 715 716
            let mk_field s f =
              let ghost = f.f_ghost in
              let ity = parse f.f_pty in
              let fid = Denv.create_user_id f.f_ident in
              let s,mut = if f.f_mutable then
717
                let r = create_region fid ity in
718 719
                Sreg.add r s, Some r
              else
720
                Sreg.union s ity.ity_vars.vars_reg, None
721
              in
722 723
              let vtv = vty_value ?mut ~ghost ity in
              s, (create_pvsymbol fid vtv, true)
724 725 726
            in
            let s,pjl = Util.map_fold_left mk_field Sreg.empty fl in
            let cid = { d.td_ident with id = "mk " ^ d.td_ident.id } in
727
            Hashtbl.replace predefs x [Denv.create_user_id cid, pjl];
728 729 730 731 732 733 734 735 736 737 738
            create_itysymbol id ~abst ~priv vl (Sreg.elements s) None
        | TDalgebraic _ | TDrecord _ | TDabstract ->
            create_itysymbol id ~abst ~priv vl [] None
      in
      Hashtbl.add tysymbols x (Some ts);
      ts
  in
  Mstr.iter (fun x _ -> ignore (its_visit x)) def;

  (* create predefinitions for immutable types *)

739
  let def_visit d (abstr,algeb,alias) =
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
    let x = d.td_ident.id in
    let ts = Util.of_option (Hashtbl.find tysymbols x) in
    let add_tv s x v = Mstr.add x.id v s in
    let vars = List.fold_left2 add_tv Mstr.empty d.td_params ts.its_args in
    let get_ts = function
      | Qident { id = x } when Mstr.mem x def ->
          ProgTS (Util.of_option (Hashtbl.find tysymbols x))
      | q -> find_tysymbol q uc
    in
    let rec parse = function
      | PPTtyvar { id = v ; id_loc = loc } ->
          let e = Loc.Located (loc, UnboundTypeVar v) in
          ity_var (Mstr.find_exn e v vars)
      | PPTtyapp (tyl,q) ->
          let tyl = List.map parse tyl in
          begin match get_ts q with
            | PureTS ts -> Loc.try2 (Typing.qloc q) ity_pur ts tyl
            | ProgTS ts -> Loc.try3 (Typing.qloc q) ity_app ts tyl []
          end
      | PPTtuple tyl ->
760
          let ts = ts_tuple (List.length tyl) in
761 762 763
          ity_pur ts (List.map parse tyl)
    in
    match d.td_def with
764 765 766 767
      | TDabstract ->
          ts :: abstr, algeb, alias
      | TDalias _ ->
          abstr, algeb, ts :: alias
768
      | (TDalgebraic _ | TDrecord _) when Hashtbl.find mutables x ->
769
          abstr, (ts, Hashtbl.find predefs x) :: algeb, alias
770 771 772 773
      | TDalgebraic csl ->
          let projs = Hashtbl.create 5 in
          let mk_proj (id,pty) =
            let ity = parse pty in
774
            let vtv = vty_value ity in
775 776
            match id with
              | None ->
777
                  create_pvsymbol (id_fresh "pj") vtv, false
778 779 780
              | Some id ->
                  try
                    let pv = Hashtbl.find projs id.id in
781
                    let ty = pv.pv_vtv.vtv_ity in
782 783
                    (* once we have ghost/mutable fields in algebraics,
                       don't forget to check here that they coincide, too *)
784
                    Loc.try2 id.id_loc ity_equal_check ty ity;
785 786
                    pv, true
                  with Not_found ->
787
                    let pv = create_pvsymbol (Denv.create_user_id id) vtv in
788 789 790 791 792
                    Hashtbl.replace projs id.id pv;
                    pv, true
          in
          let mk_constr (_loc,cid,pjl) =
            Denv.create_user_id cid, List.map mk_proj pjl in
793
          abstr, (ts, List.map mk_constr csl) :: algeb, alias
794 795 796
      | TDrecord fl ->
          let mk_field f =
            let fid = Denv.create_user_id f.f_ident in
797 798
            let vtv = vty_value ~ghost:f.f_ghost (parse f.f_pty) in
            create_pvsymbol fid vtv, true in
799
          let cid = { d.td_ident with id = "mk " ^ d.td_ident.id } in
800 801
          let csl = [Denv.create_user_id cid, List.map mk_field fl] in
          abstr, (ts, csl) :: algeb, alias
802
  in
803
  let abstr,algeb,alias = List.fold_right def_visit tdl ([],[],[]) in
804 805

  (* detect pure type declarations *)
806

807 808 809
  let kn = get_known uc in
  let check its = Mid.mem its.its_pure.ts_name kn in
  let check ity = ity_s_any check Util.ffalse ity in
810
  let is_impure_type ts =
811
    ts.its_abst || ts.its_priv || ts.its_regs <> [] ||
812
    option_apply false check ts.its_def
813
  in
814
  let check (pv,_) =
815
    let vtv = pv.pv_vtv in
816
    vtv.vtv_ghost || vtv.vtv_mut <> None || check vtv.vtv_ity in
817 818 819
  let is_impure_data (ts,csl) =
    is_impure_type ts ||
    List.exists (fun (_,l) -> List.exists check l) csl
820
  in
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
  let mk_pure_decl (ts,csl) =
    let pjt = Hvs.create 3 in
    let ty = ty_app ts.its_pure (List.map ty_var ts.its_args) in
    let mk_proj (pv,f) =
      let vs = pv.pv_vs in
      if f then try vs.vs_ty, Some (Hvs.find pjt vs) with Not_found ->
        let pj = create_fsymbol (id_clone vs.vs_name) [ty] vs.vs_ty in
        Hvs.replace pjt vs pj;
        vs.vs_ty, Some pj
      else
        vs.vs_ty, None
    in
    let mk_constr (id,pjl) =
      let pjl = List.map mk_proj pjl in
      let cs = create_fsymbol id (List.map fst pjl) ty in
      cs, List.map snd pjl
    in
    ts.its_pure, List.map mk_constr csl
  in
  let add_type_decl uc ts =
    if is_impure_type ts then
      add_pdecl_with_tuples uc (create_ty_decl ts)
843
    else
844 845 846 847 848 849 850 851 852 853 854 855 856
      add_decl_with_tuples uc (Decl.create_ty_decl ts.its_pure)
  in
  try
    let uc = List.fold_left add_type_decl uc abstr in
    let uc = if algeb = [] then uc else
      if List.exists is_impure_data algeb then
        add_pdecl_with_tuples uc (create_data_decl algeb)
      else
        let d = List.map mk_pure_decl algeb in
        add_decl_with_tuples uc (Decl.create_data_decl d)
    in
    let uc = List.fold_left add_type_decl uc alias in
    uc
857
  with
858 859 860 861 862 863 864 865 866
    | ClashSymbol s ->
        error ?loc:(look_for_loc tdl s) (ClashSymbol s)
    | RecordFieldMissing ({ ls_name = { id_string = s }} as cs,ls) ->
        error ?loc:(look_for_loc tdl s) (RecordFieldMissing (cs,ls))
    | DuplicateRecordField ({ ls_name = { id_string = s }} as cs,ls) ->
        error ?loc:(look_for_loc tdl s) (DuplicateRecordField (cs,ls))
    | DuplicateVar { vs_name = { id_string = s }} ->
        errorm ?loc:(look_for_loc tdl s)
          "Field %s is used twice in the same constructor" s
867 868 869

(** Use/Clone of theories and modules *)

870 871 872 873
type mlw_contents = modul Mstr.t
type mlw_library = mlw_contents library
type mlw_file = mlw_contents * Theory.theory Mstr.t

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
let find_theory loc lib path s =
  (* search first in .mlw files (using lib) *)
  let thm =
    try Some (Env.read_lib_theory lib path s)
    with LibFileNotFound _ | TheoryNotFound _ -> None
  in
  (* search also in .why files *)
  let th =
    try Some (Env.find_theory (Env.env_of_library lib) path s)
    with LibFileNotFound _ | TheoryNotFound _ -> None
  in
  match thm, th with
    | Some _, Some _ ->
        Loc.errorm ~loc
          "a module/theory %s is defined both in Why and WhyML libraries" s
    | None, None -> Loc.error ~loc (Env.TheoryNotFound (path, s))
    | None, Some t | Some t, None -> t

let find_theory loc lib mt path s = match path with
  | [] -> (* local theory *)
      begin try Mstr.find s mt with Not_found -> find_theory loc lib [] s end
  | _ :: _ -> (* theory in file path *)
      find_theory loc lib path s

type theory_or_module = Theory of Theory.theory | Module of modul

900 901 902
let print_path fmt sl =
  Pp.print_list (Pp.constant_string ".") Format.pp_print_string fmt sl

903 904 905 906 907
let find_module loc lib path s =
  (* search first in .mlw files *)
  let m, thm =
    try
      let mm, mt = Env.read_lib_file lib path in
908
      Mstr.find_opt s mm, Mstr.find_opt s mt
909 910 911 912 913 914 915 916 917 918 919 920 921
    with
      | LibFileNotFound _ -> None, None
  in
  (* search also in .why files *)
  let th =
    try Some (Env.find_theory (Env.env_of_library lib) path s)
    with LibFileNotFound _ | TheoryNotFound _ -> None
  in
  match m, thm, th with
    | Some _, None, _ -> assert false
    | _, Some _, Some _ ->
        Loc.errorm ~loc
          "a module/theory %s is defined both in Why and WhyML libraries" s
922 923
    | None, None, None ->
        Loc.errorm ~loc "Theory/module not found: %a" print_path (path @ [s])
924 925 926
    | Some m, Some _, None -> Module m
    | None, Some t, None | None, None, Some t -> Theory t

927
let find_module loc lib mm mt path s = match path with
928 929 930 931 932 933 934
  | [] -> (* local module/theory *)
      begin try Module (Mstr.find s mm)
        with Not_found -> begin try Theory (Mstr.find s mt)
          with Not_found -> find_module loc lib [] s end end
  | _ :: _ -> (* module/theory in file path *)
      find_module loc lib path s

935 936
(** Main loop *)

937
let add_theory lib path mt m =
938 939
  let { id = id; id_loc = loc } = m.pth_name in
  if Mstr.mem id mt then Loc.errorm ~loc "clash with previous theory %s" id;
940
  let uc = create_theory ~path (Denv.create_user_id m.pth_name) in
941
  let rec add_decl uc = function
942 943
    | Dlogic d ->
        Typing.add_decl uc d
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
    | Duseclone (loc, use, inst) ->
        let path, s = Typing.split_qualid use.use_theory in
        let th = find_theory loc lib mt path s in
        (* open namespace, if any *)
        let uc =
          if use.use_imp_exp <> None then Theory.open_namespace uc else uc in
        (* use or clone *)
        let uc = match inst with
          | None -> Theory.use_export uc th
          | Some inst ->
              let inst = Typing.type_inst uc th inst in
              Theory.clone_export uc th inst
        in
        (* close namespace, if any *)
        begin match use.use_imp_exp with
          | None -> uc
          | Some imp -> Theory.close_namespace uc imp use.use_as
        end
962 963 964
    | Dnamespace (loc, name, import, dl) ->
        let uc = Theory.open_namespace uc in
        let uc = List.fold_left add_decl uc dl in
965
        Loc.try3 loc Theory.close_namespace uc import name
966 967 968 969
    | Dlet _ | Dletrec _ | Dparam _ | Dexn _ | Duse _ ->
        assert false
  in
  let uc = List.fold_left add_decl uc m.pth_decl in
970
  let th = close_theory uc in
971 972 973 974 975 976 977 978
  Mstr.add id th mt

let add_module lib path mm mt m =
  let { id = id; id_loc = loc } = m.mod_name in
  if Mstr.mem id mm then Loc.errorm ~loc "clash with previous module %s" id;
  if Mstr.mem id mt then Loc.errorm ~loc "clash with previous theory %s" id;
  let uc = create_module ~path (Denv.create_user_id m.mod_name) in
  let rec add_decl uc = function
979 980 981 982
    | Dlogic (TypeDecl tdl) ->
        add_types uc tdl
    | Dlogic d ->
        add_to_theory Typing.add_decl uc d
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    | Duseclone (loc, use, inst) ->
        let path, s = Typing.split_qualid use.use_theory in
        let mth = find_module loc lib mm mt path s in
        (* open namespace, if any *)
        let uc = if use.use_imp_exp <> None then open_namespace uc else uc in
        (* use or clone *)
        let uc = match mth, inst with
          | Theory th, None -> use_export_theory uc th
          | Theory th, Some inst ->
              let inst = Typing.type_inst (get_theory uc) th inst in
              clone_export_theory uc th inst
          | Module m, None -> use_export uc m
          | Module m, Some inst ->
              let inst = Typing.type_inst (get_theory uc) m.mod_theory inst in
              clone_export uc m inst
        in
        (* close namespace, if any *)
        begin match use.use_imp_exp with
          | None -> uc
          | Some imp -> close_namespace uc imp use.use_as
        end
    | Dnamespace (loc, name, import, dl) ->
        let uc = open_namespace uc in
        let uc = List.fold_left add_decl uc dl in
        Loc.try3 loc close_namespace uc import name
1008
    | Dlet (id, e) ->
1009
        let e = dexpr ~userloc:None (create_denv uc) e in
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
        let pd = match e.dexpr_desc with
          | DEfun (bl, tr) ->
              let def = expr_fun Mstr.empty id bl tr in
              create_rec_decl [def]
          | _ ->
              let e = expr Mstr.empty e in
              let def = create_let_defn (id_user id) e in
              create_let_decl def
        in
        Loc.try2 loc add_pdecl_with_tuples uc pd
1020 1021 1022 1023
    | Dletrec _ | Dparam _ | Dexn _ ->
        assert false (* TODO *)
    | Duse _ ->
        assert false (*TO BE REMOVED EVENTUALLY *)
1024 1025 1026 1027
  in
  let uc = List.fold_left add_decl uc m.mod_decl in
  let m = close_module uc in
  Mstr.add id m mm, Mstr.add id m.mod_theory mt
1028 1029 1030

let add_theory_module lib path (mm, mt) = function
  | Ptheory th -> mm, add_theory lib path mt th
1031
  | Pmodule m -> add_module lib path mm mt m
1032