Attention une mise à jour du serveur va être effectuée le vendredi 16 avril entre 12h et 12h30. Cette mise à jour va générer une interruption du service de quelques minutes.

blocking_semantics3.mlw 25.9 KB
Newer Older
1 2 3 4 5 6 7 8

(** {1 A certified WP calculus} *)

(** {2 A simple imperative language with expressions, syntax and semantics} *)

theory ImpExpr

use import int.Int
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
9
use import int.MinMax
10 11
use import bool.Bool
use export list.List
Asma Tafat's avatar
Asma Tafat committed
12
use export list.Append
13 14 15 16 17 18 19 20 21 22 23
use map.Map as IdMap

(** types and values *)

type datatype = TYunit | TYint | TYbool
type value = Vvoid | Vint int | Vbool bool

(** terms and formulas *)

type operator = Oplus | Ominus | Omult | Ole

24
(** ident for mutable variables *)
25 26
type mident

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
27
lemma mident_decide :
28 29
  forall m1 m2: mident. m1 = m2 \/ m1 <> m2

30
(** ident for immutable variables *)
31
type ident = {| ident_index : int |}
Claude Marche's avatar
Claude Marche committed
32

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
33
lemma ident_decide :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
34
  forall m1 m2: ident. m1 = m2 \/ m1 <> m2
35 36

(** Terms *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
37
type term =
38 39 40 41 42 43 44 45
  | Tvalue value
  | Tvar ident
  | Tderef mident
  | Tbin term operator term


predicate var_occurs_in_term (x:ident) (t:term) =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
46 47 48 49
  | Tvalue _  -> false
  |  Tvar i  -> x=i
  |  Tderef _  -> false
  |  Tbin t1 _ t2 -> var_occurs_in_term x t1 \/ var_occurs_in_term x t2
50 51
  end

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
52 53
(* predicate term_inv (t:term) = *)
(*   forall x:ident. var_occurs_in_term x t -> x.ident_index <= t.term_maxvar *)
54 55

function mk_tvalue (v:value) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
56
   Tvalue v
57 58

function mk_tvar (i:ident) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
59
   Tvar i
60 61

function mk_tderef (r:mident) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
62
   Tderef r
63 64

function mk_tbin (t1:term) (o:operator) (t2:term) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
65
    Tbin t1 o t2
66 67 68 69 70 71 72 73 74 75 76


(** Formulas *)
type fmla =
  | Fterm term
  | Fand fmla fmla
  | Fnot fmla
  | Fimplies fmla fmla
  | Flet ident term fmla         (* let id = term in fmla *)
  | Fforall ident datatype fmla  (* forall id : ty, fmla *)

77 78 79 80 81 82 83 84
(** Statements *)
type stmt =
  | Sskip
  | Sassign mident term
  | Sseq stmt stmt
  | Sif term stmt stmt
  | Sassert fmla
  | Swhile term fmla stmt  (* while cond invariant inv body *)
85

86 87 88
lemma decide_is_skip:
  forall s:stmt. s = Sskip \/ s <> Sskip

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
(** Typing *)

function type_value (v:value) : datatype =
    match v with
      | Vvoid  -> TYunit
      | Vint int ->  TYint
      | Vbool bool -> TYbool
end

inductive type_operator (op:operator) (ty1 ty2 ty: datatype) =
      | Type_plus : type_operator Oplus TYint TYint TYint
      | Type_minus : type_operator Ominus TYint TYint TYint
      | Type_mult : type_operator Omult TYint TYint TYint
      | Type_le : type_operator Ole TYint TYint TYbool

type type_stack = list (ident, datatype)  (* map local immutable variables to their type *)
function get_vartype (i:ident) (pi:type_stack) : datatype =
  match pi with
  | Nil -> TYunit
  | Cons (x,ty) r -> if x=i then ty else get_vartype i r
  end

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
111

112 113 114 115 116
type type_env = IdMap.map mident datatype  (* map global mutable variables to their type *)
function get_reftype (i:mident) (e:type_env) : datatype = IdMap.get e i

inductive type_term type_env type_stack term datatype =
  | Type_value :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
117 118
      forall sigma: type_env, pi:type_stack, v:value.
	type_term sigma pi  (Tvalue v) (type_value v)
119
  | Type_var :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
120
      forall sigma: type_env, pi:type_stack, v: ident, ty:datatype.
121
        (get_vartype v pi = ty) ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
122
        type_term sigma pi (Tvar v) ty
123
  | Type_deref :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
124
      forall sigma: type_env, pi:type_stack, v: mident, ty:datatype.
125
        (get_reftype v sigma = ty) ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
126
        type_term sigma pi (Tderef v) ty
127 128
  | Type_bin :
      forall sigma: type_env, pi:type_stack, t1 t2 : term, op:operator,
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
129
        ty1 ty2 ty:datatype.
130 131 132
        type_term sigma pi t1 ty1 ->
	type_term sigma pi t2 ty2 ->
	type_operator op ty1 ty2 ty ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
133
        type_term sigma pi (Tbin t1 op t2) ty
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

inductive type_fmla type_env type_stack fmla =
  | Type_term :
      forall sigma: type_env, pi:type_stack, t:term.
	type_term sigma pi t TYbool ->
	type_fmla sigma pi (Fterm t)
  | Type_conj :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fand f1 f2)
  | Type_neg :
      forall sigma: type_env, pi:type_stack, f:fmla.
	type_fmla sigma pi f ->
        type_fmla sigma pi (Fnot f)
  | Type_implies :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fimplies f1 f2)
  | Type_let :
      forall sigma: type_env, pi:type_stack, x:ident, t:term, f:fmla, ty:datatype.
	type_term sigma pi t ty ->
        type_fmla sigma (Cons (x,ty) pi) f ->
        type_fmla sigma pi (Flet x t f)
  | Type_forall1 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYint) pi) f ->
  	type_fmla sigma pi (Fforall x TYint f)
  | Type_forall2 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYbool) pi) f ->
  	type_fmla sigma pi (Fforall x TYbool f)
  | Type_forall3:
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYunit) pi) f ->
  	type_fmla sigma pi (Fforall x TYunit f)

172 173 174 175 176 177 178 179 180 181 182
inductive type_stmt type_env type_stack stmt =
  | Type_skip :
      forall sigma: type_env, pi:type_stack.
	type_stmt sigma pi Sskip
  | Type_seq :
      forall sigma: type_env, pi:type_stack, s1 s2:stmt.
        type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
	type_stmt sigma pi (Sseq s1 s2)
  | Type_assigns :
      forall sigma: type_env, pi:type_stack, x:mident, t:term, ty:datatype.
183
	(get_reftype x sigma = ty) ->
184 185 186 187 188 189 190 191 192 193
        type_term sigma pi t ty ->
        type_stmt sigma pi (Sassign x t)
  | Type_if :
      forall sigma: type_env, pi:type_stack, t:term, s1 s2:stmt.
	type_term sigma pi t TYbool ->
	type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
    	type_stmt sigma pi (Sif t s1 s2)
  | Type_assert :
      forall sigma: type_env, pi:type_stack, p:fmla.
194
	type_fmla sigma pi p ->
195 196 197
    	type_stmt sigma pi (Sassert p)
  | Type_while :
      forall sigma: type_env, pi:type_stack, guard:term, body:stmt, inv:fmla.
198
	type_fmla sigma pi inv ->
199 200
        type_term sigma pi guard TYbool ->
        type_stmt sigma pi body ->
Claude Marche's avatar
Claude Marche committed
201
        type_stmt sigma pi (Swhile guard inv body)
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

(** Operational semantic *)
type env = IdMap.map mident value  (* map global mutable variables to their value *)
function get_env (i:mident) (e:env) : value = IdMap.get e i

type stack = list (ident, value)  (* map local immutable variables to their value *)
function get_stack (i:ident) (pi:stack) : value =
  match pi with
  | Nil -> Vvoid
  | Cons (x,v) r -> if x=i then v else get_stack i r
  end

lemma get_stack_eq:
  forall x:ident, v:value, r:stack.
    get_stack x (Cons (x,v) r) = v

lemma get_stack_neq:
  forall x i:ident, v:value, r:stack.
    x <> i -> get_stack i (Cons (x,v) r) = get_stack i r

(** semantics of formulas *)

function eval_bin (x:value) (op:operator) (y:value) : value =
  match x,y with
  | Vint x,Vint y ->
     match op with
     | Oplus -> Vint (x+y)
     | Ominus -> Vint (x-y)
     | Omult -> Vint (x*y)
     | Ole -> Vbool (if x <= y then True else False)
     end
  | _,_ -> Vvoid
  end

function eval_term (sigma:env) (pi:stack) (t:term) : value =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
238 239 240 241
  | Tvalue v -> v
  |  Tvar id  -> get_stack id pi
  |  Tderef id  -> get_env id sigma
  |  Tbin t1 op t2  ->
242
     eval_bin (eval_term sigma pi t1) op (eval_term sigma pi t2)
Asma Tafat's avatar
Asma Tafat committed
243
end
244

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
245
inductive compatible datatype value =
Claude Marche's avatar
Claude Marche committed
246
    | Compatible_bool :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
247
	forall b: bool. compatible TYbool (Vbool b)
Claude Marche's avatar
Claude Marche committed
248
    | Compatible_int :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
249
	forall n: int. compatible TYint (Vint n)
Claude Marche's avatar
Claude Marche committed
250
    | Compatible_void :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
251 252 253 254 255 256 257
	compatible TYunit Vvoid

predicate existe_compatible (ty:datatype) (v:value) =
   match ty with
    | TYbool -> exists b: bool. v = Vbool b
    | TYint -> exists n: int. v = Vint n
    | TYunit -> v = Vvoid
Claude Marche's avatar
Claude Marche committed
258
end
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
259

Claude Marche's avatar
Claude Marche committed
260
predicate compatible_env (sigma:env) (sigmat:type_env) (pi:stack) (pit: type_stack) =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
261 262 263
 (forall id: mident. compatible (get_reftype id sigmat) (IdMap.get sigma id)) /\
   (forall id: ident. compatible (get_vartype id pit) (get_stack id pi))

Asma Tafat's avatar
Asma Tafat committed
264
lemma eval_type_term:
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
265 266 267
  forall t:term, sigma:env, pi:stack, sigmat:type_env, pit:type_stack, ty:datatype.
    compatible_env sigma sigmat pi pit ->
    type_term sigmat pit t ty -> existe_compatible ty (eval_term sigma pi t)
268

269 270


271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
predicate eval_fmla (sigma:env) (pi:stack) (f:fmla) =
  match f with
  | Fterm t -> eval_term sigma pi t = Vbool True
  | Fand f1 f2 -> eval_fmla sigma pi f1 /\ eval_fmla sigma pi f2
  | Fnot f -> not (eval_fmla sigma pi f)
  | Fimplies f1 f2 -> eval_fmla sigma pi f1 -> eval_fmla sigma pi f2
  | Flet x t f ->
      eval_fmla sigma (Cons (x,eval_term sigma pi t) pi) f
  | Fforall x TYint f ->
     forall n:int. eval_fmla sigma (Cons (x,Vint n) pi) f
  | Fforall x TYbool f ->
     forall b:bool. eval_fmla sigma (Cons (x,Vbool b) pi) f
  | Fforall x TYunit f ->  eval_fmla sigma (Cons (x,Vvoid) pi) f
  end

(** substitution of a reference [r] by a logic variable [v]
   warning: proper behavior only guaranted if [v] is "fresh",
   i.e index(v) > term_maxvar(t) *)

function msubst_term (t:term) (r:mident) (v:ident) : term =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
292 293 294
  | Tvalue _ | Tvar _  -> t
  | Tderef x -> if r = x then mk_tvar v else t
  | Tbin t1 op t2  ->
Claude Marche's avatar
Claude Marche committed
295
      mk_tbin (msubst_term t1 r v) op (msubst_term t2 r v)
296 297 298 299
  end

function subst_term (t:term) (r:ident) (v:ident) : term =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
300 301
  | Tvalue _ | Tderef _  -> t
  | Tvar x  ->
302
      if r = x then mk_tvar v else t
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
303
  | Tbin t1 op t2  ->
304 305 306 307 308
     mk_tbin (subst_term t1 r v) op (subst_term t2 r v)
  end

(** [fresh_in_term id t] is true when [id] does not occur in [t] *)
predicate fresh_in_term (id:ident) (t:term) =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
309
    not (var_occurs_in_term id t)
310

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
311 312 313 314
lemma fresh_in_binop:
  forall t t':term, op:operator, v:ident.
    fresh_in_term v (mk_tbin t op t') ->
      fresh_in_term v t  /\ fresh_in_term v t'
Claude Marche's avatar
Claude Marche committed
315

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
316 317 318 319 320
(* lemma eval_subst_term: *)
(*   forall sigma:env, pi:stack, e:term, x:ident, v:ident. *)
(*     fresh_in_term v e -> *)
(*     eval_term sigma pi (subst_term e x v) = *)
(*     eval_term sigma (Cons (x, (get_stack v pi)) pi) e *)
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

predicate fresh_in_fmla (id:ident) (f:fmla) =
  match f with
  | Fterm e -> fresh_in_term id e
  | Fand f1 f2   | Fimplies f1 f2 ->
      fresh_in_fmla id f1 /\ fresh_in_fmla id f2
  | Fnot f -> fresh_in_fmla id f
  | Flet y t f -> id <> y /\ fresh_in_term id t /\ fresh_in_fmla id f
  | Fforall y ty f -> id <> y /\ fresh_in_fmla id f
  end

function subst (f:fmla) (x:ident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (subst_term e x v)
  | Fand f1 f2 -> Fand (subst f1 x v) (subst f2 x v)
  | Fnot f -> Fnot (subst f x v)
  | Fimplies f1 f2 -> Fimplies (subst f1 x v) (subst f2 x v)
  | Flet y t f -> Flet y (subst_term t x v) (subst f x v)
  | Fforall y ty f -> Fforall y ty (subst f x v)
  end

function msubst (f:fmla) (x:mident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (msubst_term e x v)
  | Fand f1 f2 -> Fand (msubst f1 x v) (msubst f2 x v)
  | Fnot f -> Fnot (msubst f x v)
  | Fimplies f1 f2 -> Fimplies (msubst f1 x v) (msubst f2 x v)
  | Flet y t f -> Flet y (msubst_term t x v) (msubst f x v)
  | Fforall y ty f -> Fforall y ty (msubst f x v)
  end

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
352 353 354 355
lemma subst_fresh_term :
  forall t:term, x:ident, v:ident.
   fresh_in_term x t -> subst_term t x v = t

356 357 358 359
lemma subst_fresh :
  forall f:fmla, x:ident, v:ident.
   fresh_in_fmla x f -> subst f x v = f

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
360 361 362 363
(* Not needed *)
(* lemma let_subst: *)
(*     forall t:term, f:fmla, x id':ident, id :mident. *)
(*     msubst (Flet x t f) id id' = Flet x (msubst_term t id id') (msubst f id id') *)
364

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
365 366 367 368 369 370
lemma eval_msubst_term:
  forall e:term, sigma:env, pi:stack, x:mident, v:ident.
    fresh_in_term v e ->
    eval_term sigma pi (msubst_term e x v) =
    eval_term (IdMap.set sigma x (get_stack v pi)) pi e

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
371
(* Need it for monotonicity and wp_reduction *)
372 373 374 375 376 377
lemma eval_msubst:
  forall f:fmla, sigma:env, pi:stack, x:mident, v:ident.
    fresh_in_fmla v f ->
    (eval_fmla sigma pi (msubst f x v) <->
     eval_fmla (IdMap.set sigma x (get_stack v pi)) pi f)

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
378 379 380 381 382
(* lemma eval_subst: *)
(*   forall f:fmla, sigma:env, pi:stack, x:ident, v:ident. *)
(*     fresh_in_fmla v f -> *)
(*     (eval_fmla sigma pi (subst f x v) <-> *)
(*      eval_fmla sigma (Cons(x, (get_stack v pi)) pi) f) *)
383

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
384
lemma eval_swap_term:
Asma Tafat's avatar
Asma Tafat committed
385 386 387 388
forall t:term, sigma:env, pi l:stack, id1 id2:ident, v1 v2:value.
id1 <> id2 ->
(eval_term sigma (l++(Cons (id1,v1) (Cons (id2,v2) pi))) t =
eval_term sigma (l++(Cons (id2,v2) (Cons (id1,v1) pi))) t)
Asma Tafat's avatar
Asma Tafat committed
389

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
390 391 392 393 394
lemma eval_swap_term_2:
  forall t:term, sigma:env, pi:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_term sigma (Cons (id1,v1) (Cons (id2,v2) pi)) t =
    eval_term sigma (Cons (id2,v2) (Cons (id1,v1) pi)) t)
Asma Tafat's avatar
Asma Tafat committed
395

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
396
lemma eval_swap:
Asma Tafat's avatar
Asma Tafat committed
397 398 399 400 401
  forall f:fmla, sigma:env, pi l:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_fmla sigma (l++(Cons (id1,v1) (Cons (id2,v2) pi))) f <->
    eval_fmla sigma (l++(Cons (id2,v2) (Cons (id1,v1) pi))) f)

Asma Tafat's avatar
Asma Tafat committed
402
lemma eval_swap_2:
403
  forall f:fmla, id1 id2:ident, v1 v2:value.
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
404
    id1 <> id2 ->
405
      forall sigma:env, pi:stack.
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
406 407 408 409 410 411 412
    (eval_fmla sigma (Cons (id1,v1) (Cons (id2,v2) pi)) f <->
    eval_fmla sigma (Cons (id2,v2) (Cons (id1,v1) pi)) f)

lemma eval_term_change_free :
  forall t:term, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_term id t ->
    eval_term sigma (Cons (id,v) pi) t = eval_term sigma pi t
413

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
414
 (* Need it for monotonicity*)
415
lemma eval_change_free :
416
  forall f:fmla, id:ident, v:value.
417
    fresh_in_fmla id f ->
418
      forall sigma:env, pi:stack.
419 420
    (eval_fmla sigma (Cons (id,v) pi) f <-> eval_fmla sigma pi f)

atafat's avatar
atafat committed
421
(** [valid_fmla f] is true when [f] is valid in any environment *)
422 423
  predicate valid_fmla (p:fmla) = forall sigma:env, pi:stack. eval_fmla sigma pi p

424
(* Not needed *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
425 426 427 428 429 430
(* axiom msubst_implies : *)
(* forall p q:fmla. *)
(*   valid_fmla (Fimplies p q) -> *)
(*   forall sigma:env, pi:stack, x:mident, id:ident. *)
(*     fresh_in_fmla id (Fand p q) ->  *)
(*     eval_fmla sigma (Cons (id, (get_env x sigma)) pi) (Fimplies (msubst p x id) (msubst q x id))  *)
atafat's avatar
atafat committed
431

432
(** let id' = t in f[id <- id'] <=> let id = t in f*)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
433 434 435 436 437 438 439 440 441 442 443 444
(* Not needed *)
(* lemma let_equiv : *)
(*   forall id:ident, id':ident, t:term, f:fmla. *)
(*     forall sigma:env, pi:stack. *)
(*       fresh_in_fmla id' f -> *)
(* 	eval_fmla sigma pi (Flet id' t (subst f id id')) *)
(* 	 -> eval_fmla sigma pi (Flet id t f) *)

(* lemma let_implies : *)
(*   forall id:ident, t:term, p q:fmla. *)
(*     valid_fmla (Fimplies p q) -> *)
(*     valid_fmla (Fimplies (Flet id t p) (Flet id t q)) *)
445

446 447 448 449 450 451 452 453
predicate fresh_in_stmt (id:ident) (s:stmt) =
  match s with
  | Sskip -> true
  | Sseq s1 s2 -> fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassign _ t -> fresh_in_term id t
  | Sif t s1 s2 -> fresh_in_term id t /\ fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassert f -> fresh_in_fmla id f
  | Swhile cond inv body -> fresh_in_term id cond /\ fresh_in_fmla id inv /\ fresh_in_stmt id body
454 455 456 457 458
  end


(** small-steps semantics for expressions *)

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
inductive one_step env stack stmt env stack stmt =

  | one_step_assign :
      forall sigma sigma':env, pi:stack, x:mident, t:term.
        sigma' = IdMap.set sigma x (eval_term sigma pi t) ->
        one_step sigma pi (Sassign x t) sigma' pi Sskip

  | one_step_seq_noskip:
      forall sigma sigma':env, pi pi':stack, s1 s1' s2:stmt.
        one_step sigma pi s1 sigma' pi' s1' ->
          one_step sigma pi (Sseq s1 s2) sigma' pi' (Sseq s1' s2)

  | one_step_seq_skip:
      forall sigma:env, pi:stack, s:stmt.
        one_step sigma pi (Sseq Sskip s) sigma pi s
474 475

  | one_step_if_true:
476 477 478
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool True ->
        one_step sigma pi (Sif t s1 s2) sigma pi s1
479 480

  | one_step_if_false:
481 482 483
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool False ->
        one_step sigma pi (Sif t s1 s2) sigma pi s2
484 485 486 487 488

  | one_step_assert:
      forall sigma:env, pi:stack, f:fmla.
        (* blocking semantics *)
        eval_fmla sigma pi f ->
489
          one_step sigma pi (Sassert f) sigma pi Sskip
490

491 492
  | one_step_while_true:
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
493 494
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
495 496 497 498
        eval_term sigma pi cond = Vbool True ->
        one_step sigma pi (Swhile cond inv body) sigma pi
        (Sseq body (Swhile cond inv body))

MARCHE Claude's avatar
MARCHE Claude committed
499
  | one_step_while_false:
500 501 502 503 504
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
        eval_term sigma pi cond = Vbool False ->
        one_step sigma pi (Swhile cond inv body) sigma pi Sskip
505 506 507

 (** many steps of execution *)

508
 inductive many_steps env stack stmt env stack stmt int =
509
   | many_steps_refl:
510
     forall sigma:env, pi:stack, s:stmt. many_steps sigma pi s sigma pi s 0
511
   | many_steps_trans:
512 513 514 515
     forall sigma1 sigma2 sigma3:env, pi1 pi2 pi3:stack, s1 s2 s3:stmt, n:int.
       one_step sigma1 pi1 s1 sigma2 pi2 s2 ->
       many_steps sigma2 pi2 s2 sigma3 pi3 s3 n ->
       many_steps sigma1 pi1 s1 sigma3 pi3 s3 (n+1)
516

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
517 518 519
lemma steps_non_neg:
  forall sigma1 sigma2:env, pi1 pi2:stack, s1 s2:stmt, n:int.
    many_steps sigma1 pi1 s1 sigma2 pi2 s2 n -> n >= 0
520

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
521
(* Used by Hoare_logic/seq_rule*)
522
  lemma many_steps_seq:
523 524
    forall sigma1 sigma3:env, pi1 pi3:stack, s1 s2:stmt, n:int.
      many_steps sigma1 pi1 (Sseq s1 s2) sigma3 pi3 Sskip n ->
525
      exists sigma2:env, pi2:stack, n1 n2:int.
526 527
        many_steps sigma1 pi1 s1 sigma2 pi2 Sskip n1 /\
        many_steps sigma2 pi2 s2 sigma3 pi3 Sskip n2 /\
528 529
        n = 1 + n1 + n2

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
530 531 532 533 534
 (* lemma one_step_change_free : *)
 (*  forall s s':stmt, sigma sigma':env, pi pi':stack, id:ident, v:value. *)
 (*    fresh_in_stmt id s -> *)
 (*    one_step sigma (Cons (id,v) pi) s sigma' pi' s' -> *)
 (*    one_step sigma pi s sigma' pi' s' *)
535 536


537 538 539 540 541 542 543 544 545 546 547 548 549 550



lemma type_preservation :
  forall s1 s2:stmt, sigma1 sigma2:env, pi1 pi2:stack,
         sigmat:type_env, pit:type_stack.
     type_stmt sigmat pit s1 /\
     compatible_env sigma1 sigmat pi1 pit /\
     one_step sigma1 pi1 s1 sigma2 pi2 s2 ->
     type_stmt sigmat pit s2 /\
     compatible_env sigma2 sigmat pi2 pit



551 552 553
(** {3 Hoare triples} *)

(** partial correctness *)
554
predicate valid_triple (p:fmla) (s:stmt) (q:fmla) =
555
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
556 557 558
      forall sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n ->
          eval_fmla sigma' pi' q
559 560

(*** total correctness *)
561
predicate total_valid_triple (p:fmla) (s:stmt) (q:fmla) =
562
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
563 564 565
      exists sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n /\
        eval_fmla sigma' pi' q
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

end


theory TestSemantics

use import ImpExpr

function my_sigma : env = IdMap.const (Vint 0)
constant x : ident
constant y : mident

function my_pi : stack = Cons (x, Vint 42) Nil

goal Test13 :
  eval_term my_sigma my_pi (mk_tvalue (Vint 13)) = Vint 13

goal Test42 :
  eval_term my_sigma my_pi (mk_tvar x) = Vint 42

goal Test0 :
  eval_term my_sigma my_pi (mk_tderef y) = Vint 0

goal Test55 :
  eval_term my_sigma my_pi (mk_tbin (mk_tvar x) Oplus (mk_tvalue (Vint 13))) = Vint 55

goal Ass42 :
  forall sigma':env, pi':stack.
594
    one_step my_sigma my_pi (Sassign y (mk_tvalue (Vint 42))) sigma' pi' Sskip ->
595 596 597
      IdMap.get sigma' y = Vint 42

goal If42 :
598
    forall sigma1 sigma2:env, pi1 pi2:stack, s:stmt.
599
      one_step my_sigma my_pi
600 601 602 603 604
        (Sif (mk_tbin (mk_tderef y) Ole (mk_tvalue (Vint 10)))
             (Sassign y (mk_tvalue (Vint 13)))
             (Sassign y (mk_tvalue (Vint 42))))
        sigma1 pi1 s ->
      one_step sigma1 pi1 s sigma2 pi2 Sskip ->
605 606 607 608 609 610 611 612 613 614 615 616 617 618
        IdMap.get sigma2 y = Vint 13

end

(** {2 Hoare logic} *)

theory HoareLogic

use import ImpExpr


(** Hoare logic rules (partial correctness) *)

lemma consequence_rule:
619
  forall p p' q q':fmla, s:stmt.
620
  valid_fmla (Fimplies p' p) ->
621
  valid_triple p s q ->
622
  valid_fmla (Fimplies q q') ->
623
  valid_triple p' s q'
624

625 626
lemma skip_rule:
  forall q:fmla. valid_triple q Sskip q
627 628

lemma assign_rule:
629 630 631
  forall p:fmla, x:mident, id:ident, t:term.
  fresh_in_fmla id p ->
  valid_triple (Flet id t (msubst p x id)) (Sassign x t) p
632 633

lemma seq_rule:
634 635 636
  forall p q r:fmla, s1 s2:stmt.
  valid_triple p s1 r /\ valid_triple r s2 q ->
  valid_triple p (Sseq s1 s2) q
637 638

lemma if_rule:
639 640 641 642
  forall t:term, p q:fmla, s1 s2:stmt.
  valid_triple (Fand p (Fterm t)) s1 q /\
  valid_triple (Fand p (Fnot (Fterm t))) s2 q ->
  valid_triple p (Sif t s1 s2) q
643 644 645

lemma assert_rule:
  forall f p:fmla. valid_fmla (Fimplies p f) ->
646
  valid_triple p (Sassert f) p
647 648 649

lemma assert_rule_ext:
  forall f p:fmla.
650
  valid_triple (Fimplies f p) (Sassert f) p
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701

(*
lemma while_rule:
  forall e:term, inv:fmla, i:expr.
  valid_triple (Fand (Fterm e) inv) i inv ->
  valid_triple inv (Swhile e inv i) (Fand (Fnot (Fterm e)) inv)

lemma while_rule_ext:
  forall e:term, inv inv':fmla, i:expr.
  valid_fmla (Fimplies inv' inv) ->
  valid_triple (Fand (Fterm e) inv') i inv' ->
  valid_triple inv' (Swhile e inv i) (Fand (Fnot (Fterm e)) inv')
*)

(*** frame rule ? *)

end

(** {2 WP calculus} *)

theory WP

use import ImpExpr
use import bool.Bool

use set.Set

(** [assigns sigma W sigma'] is true when the only differences between
    [sigma] and [sigma'] are the value of references in [W] *)

predicate assigns (sigma:env) (a:Set.set mident) (sigma':env) =
  forall i:mident. not (Set.mem i a) ->
    IdMap.get sigma i = IdMap.get sigma' i

lemma assigns_refl:
  forall sigma:env, a:Set.set mident. assigns sigma a sigma

lemma assigns_trans:
  forall sigma1 sigma2 sigma3:env, a:Set.set mident.
    assigns sigma1 a sigma2 /\ assigns sigma2 a sigma3 ->
    assigns sigma1 a sigma3

lemma assigns_union_left:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s1 sigma' -> assigns sigma (Set.union s1 s2) sigma'

lemma assigns_union_right:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s2 sigma' -> assigns sigma (Set.union s1 s2) sigma'

(** [expr_writes e W] is true when the only references modified by [e] are in [W] *)
702 703 704 705 706 707 708
predicate stmt_writes (s:stmt) (w:Set.set mident) =
  match s with
  | Sskip | Sassert _ -> true
  | Sassign id _ -> Set.mem id w
  | Sseq s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Sif t s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Swhile _ _ body -> stmt_writes body w
709 710
  end

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
711
  function fresh_from (f:fmla) : ident
712

713
  (* Need it for monotonicity*)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
714 715
  axiom fresh_from_fmla: forall f:fmla.
     fresh_in_fmla (fresh_from f) f
716

Claude Marche's avatar
Claude Marche committed
717 718 719 720
  (* intention:
       abstract_effects s f = "forall w. f"
     avec w = writes(s)
  *)
721
  function abstract_effects (s:stmt) (f:fmla) : fmla
722

Claude Marche's avatar
Claude Marche committed
723 724 725 726 727
  (* hypothese 1: si
       sigma, pi |= forall w. f
     alors
       sigma, pi |= f
  *)
MARCHE Claude's avatar
MARCHE Claude committed
728 729 730 731 732
  axiom abstract_effects_generalize :
     forall sigma:env, pi:stack, s:stmt, f:fmla.
        eval_fmla sigma pi (abstract_effects s f) ->
        eval_fmla sigma pi f

Claude Marche's avatar
Claude Marche committed
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
  (* hypothese 2: si
       |= p -> q
     alors
       |= (forall w, p) -> (forall w, q)

     remarque : il est essentiel de parler de validité dans tous les etats:
     on n'a pas
       sigma,pi |= p -> q
     implique
       sigma,pi |= (forall w, p) -> (forall w, q)

     contre-exemple: sigma(x) = 42 alors true -> x=42
        mais on n'a
             (forall x, true) -> (forall  x, x=42)
  *)
atafat's avatar
atafat committed
748
  axiom abstract_effects_monotonic :
MARCHE Claude's avatar
MARCHE Claude committed
749 750 751 752
     forall s:stmt, p q:fmla.
        valid_fmla (Fimplies p q) ->
        forall sigma:env, pi:stack.
           eval_fmla sigma pi (abstract_effects s p) ->
Claude Marche's avatar
Claude Marche committed
753
           eval_fmla sigma pi (abstract_effects s q)
atafat's avatar
atafat committed
754

755 756 757 758
  function wp (s:stmt) (q:fmla) : fmla =
    match s with
    | Sskip -> q
    | Sassert f ->
759
        (* asymmetric and *)
760 761 762
        Fand f (Fimplies f q)
    | Sseq s1 s2 -> wp s1 (wp s2 q)
    | Sassign x t ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
763
        let id = fresh_from q in
764 765 766 767 768
        Flet id t (msubst q x id)
    | Sif t s1 s2 ->
        Fand (Fimplies (Fterm t) (wp s1 q))
             (Fimplies (Fnot (Fterm t)) (wp s2 q))
    | Swhile cond inv body ->
769 770
        Fand inv
          (abstract_effects body
771 772 773
            (Fand
              (Fimplies (Fand (Fterm cond) inv) (wp body inv))
              (Fimplies (Fand (Fnot (Fterm cond)) inv) q)))
774 775 776

    end

Claude Marche's avatar
Claude Marche committed
777 778 779
  (* hypothese 3: invariance de la formule "forall w. f"
     par les effets de s si w = writes s
  *)
MARCHE Claude's avatar
MARCHE Claude committed
780 781 782 783 784
  axiom abstract_effects_writes :
     forall sigma:env, pi:stack, s:stmt, q:fmla.
        eval_fmla sigma pi (abstract_effects s q) ->
        eval_fmla sigma pi (wp s (abstract_effects s q))

785 786
  (* lemma wp_subst: *)
  (*   forall e:expr, q:fmla, id :mident, id':ident. *)
787
  (*   fresh_in_stmt id e -> *)
788 789 790
  (*     subst (wp e q) id id' = wp e (subst q id id') *)

  lemma monotonicity:
791
    forall s:stmt, p q:fmla.
792
      valid_fmla (Fimplies p q)
793
     ->	valid_fmla (Fimplies (wp s p) (wp s q) )
atafat's avatar
atafat committed
794

Claude Marche's avatar
Claude Marche committed
795 796 797 798 799 800 801 802 803 804 805
  (* remarque l'ordre des quantifications est essentiel, on n'a pas
       sigma,pi |= p -> q
     implique
       sigma,pi |= (wp s p) -> (wp s q)

     meme contre-exemple: sigma(x) = 42 alors true -> x=42
        mais 
          wp (x := 7) true = true
          wp (x := 7) x=42 = 7=42
  *)

atafat's avatar
atafat committed
806 807 808 809
  lemma distrib_conj:
    forall s:stmt, sigma:env, pi:stack, p q:fmla.
     (eval_fmla sigma pi (wp s p)) /\
     (eval_fmla sigma pi (wp s q)) ->
Claude Marche's avatar
Claude Marche committed
810
     eval_fmla sigma pi (wp s (Fand p q))
811 812

  lemma wp_reduction:
813 814
    forall sigma sigma':env, pi pi':stack, s s':stmt.
    one_step sigma pi s sigma' pi' s' ->
815
    forall q:fmla.
816 817
      eval_fmla sigma pi (wp s q) ->
      eval_fmla sigma' pi' (wp s' q)
818 819

  lemma progress:
820 821 822 823 824
    forall s:stmt, sigma:env, pi:stack,
           sigmat: type_env, pit: type_stack, q:fmla.
      compatible_env sigma sigmat pi pit ->
      type_stmt sigmat pit s ->
      eval_fmla sigma pi (wp s q) ->
825 826 827
      s <> Sskip ->
      exists sigma':env, pi':stack, s':stmt.
      one_step sigma pi s sigma' pi' s'
828

829

830

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
  predicate reducible (sigma:env) (pi:stack) (s:stmt) =
    exists sigma':env, pi':stack, s':stmt.
      one_step sigma pi s sigma' pi' s'

  lemma progress2:
    forall s:stmt, sigma:env, pi:stack,
           sigmat: type_env, pit: type_stack, q:fmla.
      compatible_env sigma sigmat pi pit ->
      type_stmt sigmat pit s ->
      eval_fmla sigma pi (wp s q) ->
      s <> Sskip -> reducible sigma pi s

  (** {3 main soundness result} *)

  lemma wp_soundness:
Claude Marche's avatar
Claude Marche committed
846
    forall n :int, sigma sigma':env, pi pi':stack, s s':stmt,
847 848 849 850 851 852 853 854
           sigmat: type_env, pit: type_stack, q:fmla.
      compatible_env sigma sigmat pi pit ->
      type_stmt sigmat pit s ->
      many_steps sigma pi s sigma' pi' s' n /\
      not (reducible sigma' pi' s') /\
      eval_fmla sigma pi (wp s q) ->
      s' = Sskip /\ eval_fmla sigma' pi' q

855 856 857 858 859 860 861 862
end


(***
Local Variables:
compile-command: "why3ide blocking_semantics3.mlw"
End:
*)