blocking_semantics3.mlw 23.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11

(** {1 A certified WP calculus} *)

(** {2 A simple imperative language with expressions, syntax and semantics} *)

theory ImpExpr

use import int.Int
use import int.MinMax
use import bool.Bool
use export list.List
Asma Tafat's avatar
Asma Tafat committed
12
use export list.Append
13 14 15 16 17 18 19 20 21 22 23
use map.Map as IdMap

(** types and values *)

type datatype = TYunit | TYint | TYbool
type value = Vvoid | Vint int | Vbool bool

(** terms and formulas *)

type operator = Oplus | Ominus | Omult | Ole

24
(** ident for mutable variables *)
25 26
type mident

27 28 29
axiom mident_decide :
  forall m1 m2: mident. m1 = m2 \/ m1 <> m2

30
(** ident for immutable variables *)
31
type ident = {| ident_index : int |}
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
32 33 34
 
axiom ident_decide :
  forall m1 m2: ident. m1 = m2 \/ m1 <> m2
35 36

(** Terms *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
37
type term =
38 39 40 41 42 43 44 45
  | Tvalue value
  | Tvar ident
  | Tderef mident
  | Tbin term operator term


predicate var_occurs_in_term (x:ident) (t:term) =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
46 47 48 49
  | Tvalue _  -> false
  |  Tvar i  -> x=i
  |  Tderef _  -> false
  |  Tbin t1 _ t2 -> var_occurs_in_term x t1 \/ var_occurs_in_term x t2
50 51
  end

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
52 53
(* predicate term_inv (t:term) = *)
(*   forall x:ident. var_occurs_in_term x t -> x.ident_index <= t.term_maxvar *)
54 55

function mk_tvalue (v:value) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
56
   Tvalue v
57 58

function mk_tvar (i:ident) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
59
   Tvar i
60 61

function mk_tderef (r:mident) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
62
   Tderef r
63 64

function mk_tbin (t1:term) (o:operator) (t2:term) : term =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
65
    Tbin t1 o t2
66 67 68 69 70 71 72 73 74 75 76


(** Formulas *)
type fmla =
  | Fterm term
  | Fand fmla fmla
  | Fnot fmla
  | Fimplies fmla fmla
  | Flet ident term fmla         (* let id = term in fmla *)
  | Fforall ident datatype fmla  (* forall id : ty, fmla *)

77 78 79 80 81 82 83 84
(** Statements *)
type stmt =
  | Sskip
  | Sassign mident term
  | Sseq stmt stmt
  | Sif term stmt stmt
  | Sassert fmla
  | Swhile term fmla stmt  (* while cond invariant inv body *)
85

86 87 88
lemma decide_is_skip:
  forall s:stmt. s = Sskip \/ s <> Sskip

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
(** Typing *)

function type_value (v:value) : datatype =
    match v with
      | Vvoid  -> TYunit
      | Vint int ->  TYint
      | Vbool bool -> TYbool
end

inductive type_operator (op:operator) (ty1 ty2 ty: datatype) =
      | Type_plus : type_operator Oplus TYint TYint TYint
      | Type_minus : type_operator Ominus TYint TYint TYint
      | Type_mult : type_operator Omult TYint TYint TYint
      | Type_le : type_operator Ole TYint TYint TYbool

type type_stack = list (ident, datatype)  (* map local immutable variables to their type *)
function get_vartype (i:ident) (pi:type_stack) : datatype =
  match pi with
  | Nil -> TYunit
  | Cons (x,ty) r -> if x=i then ty else get_vartype i r
  end

Asma Tafat's avatar
Asma Tafat committed
111
    
112 113 114 115 116
type type_env = IdMap.map mident datatype  (* map global mutable variables to their type *)
function get_reftype (i:mident) (e:type_env) : datatype = IdMap.get e i

inductive type_term type_env type_stack term datatype =
  | Type_value :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
117 118
      forall sigma: type_env, pi:type_stack, v:value.
	type_term sigma pi  (Tvalue v) (type_value v)
119
  | Type_var :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
120
      forall sigma: type_env, pi:type_stack, v: ident, ty:datatype.
121
        (get_vartype v pi = ty) ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
122
        type_term sigma pi (Tvar v) ty
123
  | Type_deref :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
124
      forall sigma: type_env, pi:type_stack, v: mident, ty:datatype.
125
        (get_reftype v sigma = ty) ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
126
        type_term sigma pi (Tderef v) ty
127 128
  | Type_bin :
      forall sigma: type_env, pi:type_stack, t1 t2 : term, op:operator,
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
129
        ty1 ty2 ty:datatype.
130 131 132
        type_term sigma pi t1 ty1 ->
	type_term sigma pi t2 ty2 ->
	type_operator op ty1 ty2 ty ->
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
133
        type_term sigma pi (Tbin t1 op t2) ty
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

inductive type_fmla type_env type_stack fmla =
  | Type_term :
      forall sigma: type_env, pi:type_stack, t:term.
	type_term sigma pi t TYbool ->
	type_fmla sigma pi (Fterm t)
  | Type_conj :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fand f1 f2)
  | Type_neg :
      forall sigma: type_env, pi:type_stack, f:fmla.
	type_fmla sigma pi f ->
        type_fmla sigma pi (Fnot f)
  | Type_implies :
      forall sigma: type_env, pi:type_stack, f1 f2:fmla.
	type_fmla sigma pi f1 ->
        type_fmla sigma pi f2 ->
        type_fmla sigma pi (Fimplies f1 f2)
  | Type_let :
      forall sigma: type_env, pi:type_stack, x:ident, t:term, f:fmla, ty:datatype.
	type_term sigma pi t ty ->
        type_fmla sigma (Cons (x,ty) pi) f ->
        type_fmla sigma pi (Flet x t f)
  | Type_forall1 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYint) pi) f ->
  	type_fmla sigma pi (Fforall x TYint f)
  | Type_forall2 :
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYbool) pi) f ->
  	type_fmla sigma pi (Fforall x TYbool f)
  | Type_forall3:
      forall sigma: type_env, pi:type_stack, x:ident, f:fmla.
        type_fmla sigma (Cons (x,TYunit) pi) f ->
  	type_fmla sigma pi (Fforall x TYunit f)

172 173 174 175 176 177 178 179 180 181 182
inductive type_stmt type_env type_stack stmt =
  | Type_skip :
      forall sigma: type_env, pi:type_stack.
	type_stmt sigma pi Sskip
  | Type_seq :
      forall sigma: type_env, pi:type_stack, s1 s2:stmt.
        type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
	type_stmt sigma pi (Sseq s1 s2)
  | Type_assigns :
      forall sigma: type_env, pi:type_stack, x:mident, t:term, ty:datatype.
183
	(get_reftype x sigma = ty) ->
184 185 186 187 188 189 190 191 192 193
        type_term sigma pi t ty ->
        type_stmt sigma pi (Sassign x t)
  | Type_if :
      forall sigma: type_env, pi:type_stack, t:term, s1 s2:stmt.
	type_term sigma pi t TYbool ->
	type_stmt sigma pi s1 ->
	type_stmt sigma pi s2 ->
    	type_stmt sigma pi (Sif t s1 s2)
  | Type_assert :
      forall sigma: type_env, pi:type_stack, p:fmla.
194
	type_fmla sigma pi p ->
195 196 197
    	type_stmt sigma pi (Sassert p)
  | Type_while :
      forall sigma: type_env, pi:type_stack, guard:term, body:stmt, inv:fmla.
198
	type_fmla sigma pi inv ->
199 200 201
        type_term sigma pi guard TYbool ->
        type_stmt sigma pi body ->
        type_stmt sigma pi (Swhile guard inv body) 
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

(** Operational semantic *)
type env = IdMap.map mident value  (* map global mutable variables to their value *)
function get_env (i:mident) (e:env) : value = IdMap.get e i

type stack = list (ident, value)  (* map local immutable variables to their value *)
function get_stack (i:ident) (pi:stack) : value =
  match pi with
  | Nil -> Vvoid
  | Cons (x,v) r -> if x=i then v else get_stack i r
  end

lemma get_stack_eq:
  forall x:ident, v:value, r:stack.
    get_stack x (Cons (x,v) r) = v

lemma get_stack_neq:
  forall x i:ident, v:value, r:stack.
    x <> i -> get_stack i (Cons (x,v) r) = get_stack i r

(** semantics of formulas *)

function eval_bin (x:value) (op:operator) (y:value) : value =
  match x,y with
  | Vint x,Vint y ->
     match op with
     | Oplus -> Vint (x+y)
     | Ominus -> Vint (x-y)
     | Omult -> Vint (x*y)
     | Ole -> Vbool (if x <= y then True else False)
     end
  | _,_ -> Vvoid
  end

function eval_term (sigma:env) (pi:stack) (t:term) : value =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
238 239 240 241
  | Tvalue v -> v
  |  Tvar id  -> get_stack id pi
  |  Tderef id  -> get_env id sigma
  |  Tbin t1 op t2  ->
242
     eval_bin (eval_term sigma pi t1) op (eval_term sigma pi t2)
Asma Tafat's avatar
Asma Tafat committed
243
end
244

245 246 247 248 249 250 251 252

lemma eval_bool_term:
  forall sigma:env, pi:stack, sigmat:type_env, pit:type_stack, t:term.
    type_term sigmat pit t TYbool ->
    (* TODO: compatibility sigma, sigmat and pi,pit *)
    exists b:bool.
      eval_term sigma pi t = Vbool b

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
predicate eval_fmla (sigma:env) (pi:stack) (f:fmla) =
  match f with
  | Fterm t -> eval_term sigma pi t = Vbool True
  | Fand f1 f2 -> eval_fmla sigma pi f1 /\ eval_fmla sigma pi f2
  | Fnot f -> not (eval_fmla sigma pi f)
  | Fimplies f1 f2 -> eval_fmla sigma pi f1 -> eval_fmla sigma pi f2
  | Flet x t f ->
      eval_fmla sigma (Cons (x,eval_term sigma pi t) pi) f
  | Fforall x TYint f ->
     forall n:int. eval_fmla sigma (Cons (x,Vint n) pi) f
  | Fforall x TYbool f ->
     forall b:bool. eval_fmla sigma (Cons (x,Vbool b) pi) f
  | Fforall x TYunit f ->  eval_fmla sigma (Cons (x,Vvoid) pi) f
  end

(** substitution of a reference [r] by a logic variable [v]
   warning: proper behavior only guaranted if [v] is "fresh",
   i.e index(v) > term_maxvar(t) *)

function msubst_term (t:term) (r:mident) (v:ident) : term =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
274 275 276
  | Tvalue _ | Tvar _  -> t
  | Tderef x -> if r = x then mk_tvar v else t
  | Tbin t1 op t2  ->
277 278 279 280 281
      mk_tbin (msubst_term t1 r v) op (msubst_term t2 r v) 
  end

function subst_term (t:term) (r:ident) (v:ident) : term =
  match t with
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
282 283
  | Tvalue _ | Tderef _  -> t
  | Tvar x  ->
284
      if r = x then mk_tvar v else t
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
285
  | Tbin t1 op t2  ->
286 287 288 289 290
     mk_tbin (subst_term t1 r v) op (subst_term t2 r v)
  end

(** [fresh_in_term id t] is true when [id] does not occur in [t] *)
predicate fresh_in_term (id:ident) (t:term) =
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
291
    not (var_occurs_in_term id t)
292

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
293 294 295 296
lemma fresh_in_binop:
  forall t t':term, op:operator, v:ident.
    fresh_in_term v (mk_tbin t op t') ->
      fresh_in_term v t  /\ fresh_in_term v t'
Asma Tafat's avatar
Asma Tafat committed
297
 
298
lemma eval_msubst_term:
299
  forall e:term, sigma:env, pi:stack, x:mident, v:ident.
300 301 302 303
    fresh_in_term v e ->
    eval_term sigma pi (msubst_term e x v) =
    eval_term (IdMap.set sigma x (get_stack v pi)) pi e

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
304 305 306 307 308
(* lemma eval_subst_term: *)
(*   forall sigma:env, pi:stack, e:term, x:ident, v:ident. *)
(*     fresh_in_term v e -> *)
(*     eval_term sigma pi (subst_term e x v) = *)
(*     eval_term sigma (Cons (x, (get_stack v pi)) pi) e *)
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

lemma eval_term_change_free :
  forall t:term, sigma:env, pi:stack, id:ident, v:value.
    fresh_in_term id t ->
    eval_term sigma (Cons (id,v) pi) t = eval_term sigma pi t

predicate fresh_in_fmla (id:ident) (f:fmla) =
  match f with
  | Fterm e -> fresh_in_term id e
  | Fand f1 f2   | Fimplies f1 f2 ->
      fresh_in_fmla id f1 /\ fresh_in_fmla id f2
  | Fnot f -> fresh_in_fmla id f
  | Flet y t f -> id <> y /\ fresh_in_term id t /\ fresh_in_fmla id f
  | Fforall y ty f -> id <> y /\ fresh_in_fmla id f
  end

function subst (f:fmla) (x:ident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (subst_term e x v)
  | Fand f1 f2 -> Fand (subst f1 x v) (subst f2 x v)
  | Fnot f -> Fnot (subst f x v)
  | Fimplies f1 f2 -> Fimplies (subst f1 x v) (subst f2 x v)
  | Flet y t f -> Flet y (subst_term t x v) (subst f x v)
  | Fforall y ty f -> Fforall y ty (subst f x v)
  end

function msubst (f:fmla) (x:mident) (v:ident) : fmla =
  match f with
  | Fterm e -> Fterm (msubst_term e x v)
  | Fand f1 f2 -> Fand (msubst f1 x v) (msubst f2 x v)
  | Fnot f -> Fnot (msubst f x v)
  | Fimplies f1 f2 -> Fimplies (msubst f1 x v) (msubst f2 x v)
  | Flet y t f -> Flet y (msubst_term t x v) (msubst f x v)
  | Fforall y ty f -> Fforall y ty (msubst f x v)
  end

lemma subst_fresh :
  forall f:fmla, x:ident, v:ident.
   fresh_in_fmla x f -> subst f x v = f

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
349 350 351 352
(* Not needed *)
(* lemma let_subst: *)
(*     forall t:term, f:fmla, x id':ident, id :mident. *)
(*     msubst (Flet x t f) id id' = Flet x (msubst_term t id id') (msubst f id id') *)
353

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
354
(* Need it for monotonicity and wp_reduction *)
355 356 357 358 359 360
lemma eval_msubst:
  forall f:fmla, sigma:env, pi:stack, x:mident, v:ident.
    fresh_in_fmla v f ->
    (eval_fmla sigma pi (msubst f x v) <->
     eval_fmla (IdMap.set sigma x (get_stack v pi)) pi f)

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
361 362 363 364 365
(* lemma eval_subst: *)
(*   forall f:fmla, sigma:env, pi:stack, x:ident, v:ident. *)
(*     fresh_in_fmla v f -> *)
(*     (eval_fmla sigma pi (subst f x v) <-> *)
(*      eval_fmla sigma (Cons(x, (get_stack v pi)) pi) f) *)
366

Asma Tafat's avatar
Asma Tafat committed
367 368 369 370
(* lemma eval_same_var_term: *)
(*   forall t:term, sigma:env, pi:stack, id:ident, v1 v2:value. *)
(*     eval_term sigma (Cons (id,v1) (Cons (id,v2) pi)) t = *)
(*     eval_term sigma (Cons (id,v1) pi) t *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
371

Asma Tafat's avatar
Asma Tafat committed
372 373 374 375
(* lemma eval_same_var: *)
(*   forall f:fmla, sigma:env, pi:stack, id:ident, v1 v2:value. *)
(*     eval_fmla sigma (Cons (id,v1) (Cons (id,v2) pi)) f <-> *)
(*     eval_fmla sigma (Cons (id,v1) pi) f *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
376

Asma Tafat's avatar
Asma Tafat committed
377
lemma eval_swap_term_any:
Asma Tafat's avatar
Asma Tafat committed
378 379 380 381
forall t:term, sigma:env, pi l:stack, id1 id2:ident, v1 v2:value.
id1 <> id2 ->
(eval_term sigma (l++(Cons (id1,v1) (Cons (id2,v2) pi))) t =
eval_term sigma (l++(Cons (id2,v2) (Cons (id1,v1) pi))) t)
Asma Tafat's avatar
Asma Tafat committed
382

Asma Tafat's avatar
Asma Tafat committed
383 384 385 386 387
(* lemma eval_swap_term: *)
(*   forall t:term, sigma:env, pi:stack, id1 id2:ident, v1 v2:value. *)
(*     id1 <> id2 -> *)
(*     (eval_term sigma (Cons (id1,v1) (Cons (id2,v2) pi)) t = *)
(*     eval_term sigma (Cons (id2,v2) (Cons (id1,v1) pi)) t) *)
Asma Tafat's avatar
Asma Tafat committed
388

Asma Tafat's avatar
Asma Tafat committed
389 390 391 392 393 394
lemma eval_swap_any:
  forall f:fmla, sigma:env, pi l:stack, id1 id2:ident, v1 v2:value.
    id1 <> id2 ->
    (eval_fmla sigma (l++(Cons (id1,v1) (Cons (id2,v2) pi))) f <->
    eval_fmla sigma (l++(Cons (id2,v2) (Cons (id1,v1) pi))) f)

Asma Tafat's avatar
Asma Tafat committed
395 396 397 398 399
(* lemma eval_swap: *)
(*   forall f:fmla, sigma:env, pi:stack, id1 id2:ident, v1 v2:value. *)
(*     id1 <> id2 -> *)
(*     (eval_fmla sigma (Cons (id1,v1) (Cons (id2,v2) pi)) f <-> *)
(*     eval_fmla sigma (Cons (id2,v2) (Cons (id1,v1) pi)) f) *)
400

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
401
 (* Need it for monotonicity*)
402
lemma eval_change_free :
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
403
  forall sigma:env, pi:stack, f:fmla, id:ident, v:value.
404 405 406
    fresh_in_fmla id f ->
    (eval_fmla sigma (Cons (id,v) pi) f <-> eval_fmla sigma pi f)

atafat's avatar
atafat committed
407
(** [valid_fmla f] is true when [f] is valid in any environment *)
408 409
  predicate valid_fmla (p:fmla) = forall sigma:env, pi:stack. eval_fmla sigma pi p

410
(* Not needed *)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
411 412 413 414 415 416
(* axiom msubst_implies : *)
(* forall p q:fmla. *)
(*   valid_fmla (Fimplies p q) -> *)
(*   forall sigma:env, pi:stack, x:mident, id:ident. *)
(*     fresh_in_fmla id (Fand p q) ->  *)
(*     eval_fmla sigma (Cons (id, (get_env x sigma)) pi) (Fimplies (msubst p x id) (msubst q x id))  *)
atafat's avatar
atafat committed
417

418
(** let id' = t in f[id <- id'] <=> let id = t in f*)
Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
419 420 421 422 423 424 425 426 427 428 429 430
(* Not needed *)
(* lemma let_equiv : *)
(*   forall id:ident, id':ident, t:term, f:fmla. *)
(*     forall sigma:env, pi:stack. *)
(*       fresh_in_fmla id' f -> *)
(* 	eval_fmla sigma pi (Flet id' t (subst f id id')) *)
(* 	 -> eval_fmla sigma pi (Flet id t f) *)

(* lemma let_implies : *)
(*   forall id:ident, t:term, p q:fmla. *)
(*     valid_fmla (Fimplies p q) -> *)
(*     valid_fmla (Fimplies (Flet id t p) (Flet id t q)) *)
431

432 433 434 435 436 437 438 439
predicate fresh_in_stmt (id:ident) (s:stmt) =
  match s with
  | Sskip -> true
  | Sseq s1 s2 -> fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassign _ t -> fresh_in_term id t
  | Sif t s1 s2 -> fresh_in_term id t /\ fresh_in_stmt id s1 /\ fresh_in_stmt id s2
  | Sassert f -> fresh_in_fmla id f
  | Swhile cond inv body -> fresh_in_term id cond /\ fresh_in_fmla id inv /\ fresh_in_stmt id body
440 441 442 443 444
  end


(** small-steps semantics for expressions *)

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
inductive one_step env stack stmt env stack stmt =

  | one_step_assign :
      forall sigma sigma':env, pi:stack, x:mident, t:term.
        sigma' = IdMap.set sigma x (eval_term sigma pi t) ->
        one_step sigma pi (Sassign x t) sigma' pi Sskip

  | one_step_seq_noskip:
      forall sigma sigma':env, pi pi':stack, s1 s1' s2:stmt.
        one_step sigma pi s1 sigma' pi' s1' ->
          one_step sigma pi (Sseq s1 s2) sigma' pi' (Sseq s1' s2)

  | one_step_seq_skip:
      forall sigma:env, pi:stack, s:stmt.
        one_step sigma pi (Sseq Sskip s) sigma pi s
460 461

  | one_step_if_true:
462 463 464
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool True ->
        one_step sigma pi (Sif t s1 s2) sigma pi s1
465 466

  | one_step_if_false:
467 468 469
      forall sigma:env, pi:stack, t:term, s1 s2:stmt.
        eval_term sigma pi t = Vbool False ->
        one_step sigma pi (Sif t s1 s2) sigma pi s2
470 471 472 473 474

  | one_step_assert:
      forall sigma:env, pi:stack, f:fmla.
        (* blocking semantics *)
        eval_fmla sigma pi f ->
475
          one_step sigma pi (Sassert f) sigma pi Sskip
476

477 478
  | one_step_while_true:
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
479 480
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
481 482 483 484
        eval_term sigma pi cond = Vbool True ->
        one_step sigma pi (Swhile cond inv body) sigma pi
        (Sseq body (Swhile cond inv body))

MARCHE Claude's avatar
MARCHE Claude committed
485
  | one_step_while_false:
486 487 488 489 490
      forall sigma:env, pi:stack, cond:term, inv:fmla, body:stmt.
        (* blocking semantics *)
        eval_fmla sigma pi inv ->
        eval_term sigma pi cond = Vbool False ->
        one_step sigma pi (Swhile cond inv body) sigma pi Sskip
491 492 493

 (** many steps of execution *)

494
 inductive many_steps env stack stmt env stack stmt int =
495
   | many_steps_refl:
496
     forall sigma:env, pi:stack, s:stmt. many_steps sigma pi s sigma pi s 0
497
   | many_steps_trans:
498 499 500 501
     forall sigma1 sigma2 sigma3:env, pi1 pi2 pi3:stack, s1 s2 s3:stmt, n:int.
       one_step sigma1 pi1 s1 sigma2 pi2 s2 ->
       many_steps sigma2 pi2 s2 sigma3 pi3 s3 n ->
       many_steps sigma1 pi1 s1 sigma3 pi3 s3 (n+1)
502

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
503 504 505
lemma steps_non_neg:
  forall sigma1 sigma2:env, pi1 pi2:stack, s1 s2:stmt, n:int.
    many_steps sigma1 pi1 s1 sigma2 pi2 s2 n -> n >= 0
506

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
507
(* Used by Hoare_logic/seq_rule*)
508
  lemma many_steps_seq:
509 510
    forall sigma1 sigma3:env, pi1 pi3:stack, s1 s2:stmt, n:int.
      many_steps sigma1 pi1 (Sseq s1 s2) sigma3 pi3 Sskip n ->
511
      exists sigma2:env, pi2:stack, n1 n2:int.
512 513
        many_steps sigma1 pi1 s1 sigma2 pi2 Sskip n1 /\
        many_steps sigma2 pi2 s2 sigma3 pi3 Sskip n2 /\
514 515
        n = 1 + n1 + n2

Asma Tafat-Bouzid's avatar
Asma Tafat-Bouzid committed
516 517 518 519 520
 (* lemma one_step_change_free : *)
 (*  forall s s':stmt, sigma sigma':env, pi pi':stack, id:ident, v:value. *)
 (*    fresh_in_stmt id s -> *)
 (*    one_step sigma (Cons (id,v) pi) s sigma' pi' s' -> *)
 (*    one_step sigma pi s sigma' pi' s' *)
521 522 523 524 525


(** {3 Hoare triples} *)

(** partial correctness *)
526
predicate valid_triple (p:fmla) (s:stmt) (q:fmla) =
527
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
528 529 530
      forall sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n ->
          eval_fmla sigma' pi' q
531 532

(*** total correctness *)
533
predicate total_valid_triple (p:fmla) (s:stmt) (q:fmla) =
534
    forall sigma:env, pi:stack. eval_fmla sigma pi p ->
535 536 537
      exists sigma':env, pi':stack, n:int.
        many_steps sigma pi s sigma' pi' Sskip n /\
        eval_fmla sigma' pi' q
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

end


theory TestSemantics

use import ImpExpr

function my_sigma : env = IdMap.const (Vint 0)
constant x : ident
constant y : mident

function my_pi : stack = Cons (x, Vint 42) Nil

goal Test13 :
  eval_term my_sigma my_pi (mk_tvalue (Vint 13)) = Vint 13

goal Test42 :
  eval_term my_sigma my_pi (mk_tvar x) = Vint 42

goal Test0 :
  eval_term my_sigma my_pi (mk_tderef y) = Vint 0

goal Test55 :
  eval_term my_sigma my_pi (mk_tbin (mk_tvar x) Oplus (mk_tvalue (Vint 13))) = Vint 55

goal Ass42 :
  forall sigma':env, pi':stack.
566
    one_step my_sigma my_pi (Sassign y (mk_tvalue (Vint 42))) sigma' pi' Sskip ->
567 568 569
      IdMap.get sigma' y = Vint 42

goal If42 :
570
    forall sigma1 sigma2:env, pi1 pi2:stack, s:stmt.
571
      one_step my_sigma my_pi
572 573 574 575 576
        (Sif (mk_tbin (mk_tderef y) Ole (mk_tvalue (Vint 10)))
             (Sassign y (mk_tvalue (Vint 13)))
             (Sassign y (mk_tvalue (Vint 42))))
        sigma1 pi1 s ->
      one_step sigma1 pi1 s sigma2 pi2 Sskip ->
577 578 579 580 581 582 583 584 585 586 587 588 589 590
        IdMap.get sigma2 y = Vint 13

end

(** {2 Hoare logic} *)

theory HoareLogic

use import ImpExpr


(** Hoare logic rules (partial correctness) *)

lemma consequence_rule:
591
  forall p p' q q':fmla, s:stmt.
592
  valid_fmla (Fimplies p' p) ->
593
  valid_triple p s q ->
594
  valid_fmla (Fimplies q q') ->
595
  valid_triple p' s q'
596

597 598
lemma skip_rule:
  forall q:fmla. valid_triple q Sskip q
599 600

lemma assign_rule:
601 602 603
  forall p:fmla, x:mident, id:ident, t:term.
  fresh_in_fmla id p ->
  valid_triple (Flet id t (msubst p x id)) (Sassign x t) p
604 605

lemma seq_rule:
606 607 608
  forall p q r:fmla, s1 s2:stmt.
  valid_triple p s1 r /\ valid_triple r s2 q ->
  valid_triple p (Sseq s1 s2) q
609 610

lemma if_rule:
611 612 613 614
  forall t:term, p q:fmla, s1 s2:stmt.
  valid_triple (Fand p (Fterm t)) s1 q /\
  valid_triple (Fand p (Fnot (Fterm t))) s2 q ->
  valid_triple p (Sif t s1 s2) q
615 616 617

lemma assert_rule:
  forall f p:fmla. valid_fmla (Fimplies p f) ->
618
  valid_triple p (Sassert f) p
619 620 621

lemma assert_rule_ext:
  forall f p:fmla.
622
  valid_triple (Fimplies f p) (Sassert f) p
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

(*
lemma while_rule:
  forall e:term, inv:fmla, i:expr.
  valid_triple (Fand (Fterm e) inv) i inv ->
  valid_triple inv (Swhile e inv i) (Fand (Fnot (Fterm e)) inv)

lemma while_rule_ext:
  forall e:term, inv inv':fmla, i:expr.
  valid_fmla (Fimplies inv' inv) ->
  valid_triple (Fand (Fterm e) inv') i inv' ->
  valid_triple inv' (Swhile e inv i) (Fand (Fnot (Fterm e)) inv')
*)

(*** frame rule ? *)

end

(** {2 WP calculus} *)

theory WP

use import ImpExpr
use import bool.Bool

use set.Set

(** [assigns sigma W sigma'] is true when the only differences between
    [sigma] and [sigma'] are the value of references in [W] *)

predicate assigns (sigma:env) (a:Set.set mident) (sigma':env) =
  forall i:mident. not (Set.mem i a) ->
    IdMap.get sigma i = IdMap.get sigma' i

lemma assigns_refl:
  forall sigma:env, a:Set.set mident. assigns sigma a sigma

lemma assigns_trans:
  forall sigma1 sigma2 sigma3:env, a:Set.set mident.
    assigns sigma1 a sigma2 /\ assigns sigma2 a sigma3 ->
    assigns sigma1 a sigma3

lemma assigns_union_left:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s1 sigma' -> assigns sigma (Set.union s1 s2) sigma'

lemma assigns_union_right:
  forall sigma sigma':env, s1 s2:Set.set mident.
    assigns sigma s2 sigma' -> assigns sigma (Set.union s1 s2) sigma'

(** [expr_writes e W] is true when the only references modified by [e] are in [W] *)
674 675 676 677 678 679 680
predicate stmt_writes (s:stmt) (w:Set.set mident) =
  match s with
  | Sskip | Sassert _ -> true
  | Sassign id _ -> Set.mem id w
  | Sseq s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Sif t s1 s2 -> stmt_writes s1 w /\ stmt_writes s2 w
  | Swhile _ _ body -> stmt_writes body w
681 682
  end

683
  function fresh_from (f:fmla) (s:stmt) : ident
684

685
  (* Need it for monotonicity*)
686 687
  axiom fresh_from_fmla: forall s:stmt, f:fmla.
     fresh_in_fmla (fresh_from f s) f
688

689 690
  axiom fresh_from_stmt: forall s:stmt, f:fmla.
     fresh_in_stmt (fresh_from f s) s
691

692
  function abstract_effects (s:stmt) (f:fmla) : fmla
693

MARCHE Claude's avatar
MARCHE Claude committed
694 695 696 697 698
  axiom abstract_effects_generalize :
     forall sigma:env, pi:stack, s:stmt, f:fmla.
        eval_fmla sigma pi (abstract_effects s f) ->
        eval_fmla sigma pi f

atafat's avatar
atafat committed
699 700
  axiom abstract_effects_monotonic :
     forall s:stmt, f:fmla.
atafat's avatar
atafat committed
701 702
        forall sigma:env, pi:stack. eval_fmla sigma pi f ->
        forall sigma:env, pi:stack. eval_fmla sigma pi (abstract_effects s f)
atafat's avatar
atafat committed
703

704 705 706 707
  function wp (s:stmt) (q:fmla) : fmla =
    match s with
    | Sskip -> q
    | Sassert f ->
708
        (* asymmetric and *)
709 710 711 712 713 714 715 716 717
        Fand f (Fimplies f q)
    | Sseq s1 s2 -> wp s1 (wp s2 q)
    | Sassign x t ->
        let id = fresh_from q s in
        Flet id t (msubst q x id)
    | Sif t s1 s2 ->
        Fand (Fimplies (Fterm t) (wp s1 q))
             (Fimplies (Fnot (Fterm t)) (wp s2 q))
    | Swhile cond inv body ->
718 719
        Fand inv
          (abstract_effects body
720 721 722
            (Fand
              (Fimplies (Fand (Fterm cond) inv) (wp body inv))
              (Fimplies (Fand (Fnot (Fterm cond)) inv) q)))
723 724 725

    end

MARCHE Claude's avatar
MARCHE Claude committed
726 727 728 729 730 731
  axiom abstract_effects_writes :
     forall sigma:env, pi:stack, s:stmt, q:fmla.
        eval_fmla sigma pi (abstract_effects s q) ->
        eval_fmla sigma pi (wp s (abstract_effects s q))


732 733
  (* lemma wp_subst: *)
  (*   forall e:expr, q:fmla, id :mident, id':ident. *)
734
  (*   fresh_in_stmt id e -> *)
735 736 737
  (*     subst (wp e q) id id' = wp e (subst q id id') *)

  lemma monotonicity:
738
    forall s:stmt, p q:fmla.
739
      valid_fmla (Fimplies p q)
740
     ->	valid_fmla (Fimplies (wp s p) (wp s q) )
atafat's avatar
atafat committed
741 742 743 744 745 746

  lemma distrib_conj:
    forall s:stmt, sigma:env, pi:stack, p q:fmla.
     (eval_fmla sigma pi (wp s p)) /\
     (eval_fmla sigma pi (wp s q)) ->
     eval_fmla sigma pi (wp s (Fand p q)) 
747 748

  lemma wp_reduction:
749 750
    forall sigma sigma':env, pi pi':stack, s s':stmt.
    one_step sigma pi s sigma' pi' s' ->
751
    forall q:fmla.
752 753
      eval_fmla sigma pi (wp s q) ->
      eval_fmla sigma' pi' (wp s' q)
754 755

  lemma progress:
756 757 758
    forall s:stmt, sigma:env, pi:stack,
      sigmat: type_env, pit: type_stack, q:fmla.
      type_stmt sigmat pit s ->
759
(* useful ?
760
      type_fmla sigmat pit q ->
761
*)
762 763 764 765
      eval_fmla sigma pi (wp s q) -> 
      s <> Sskip ->
      exists sigma':env, pi':stack, s':stmt.
      one_step sigma pi s sigma' pi' s'
766 767 768 769 770 771 772 773 774

end


(***
Local Variables:
compile-command: "why3ide blocking_semantics3.mlw"
End:
*)