mlw_wp.ml 41.7 KB
Newer Older
Andrei Paskevich's avatar
Andrei Paskevich committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(**************************************************************************)
(*                                                                        *)
(*  Copyright (C) 2010-2012                                               *)
(*    François Bobot                                                      *)
(*    Jean-Christophe Filliâtre                                           *)
(*    Claude Marché                                                       *)
(*    Guillaume Melquiond                                                 *)
(*    Andrei Paskevich                                                    *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

21
open Util
Andrei Paskevich's avatar
Andrei Paskevich committed
22 23 24
open Ident
open Ty
open Term
25
open Decl
Andrei Paskevich's avatar
Andrei Paskevich committed
26 27 28 29 30
open Theory
open Mlw_ty
open Mlw_ty.T
open Mlw_expr

31
let debug = Debug.register_info_flag "whyml_wp"
Andrei Paskevich's avatar
Andrei Paskevich committed
32
  ~desc:"Print@ details@ of@ verification@ conditions@ generation."
33

34
let no_track = Debug.register_flag "wp_no_track"
Andrei Paskevich's avatar
Andrei Paskevich committed
35 36
  ~desc:"Do@ not@ remove@ redundant@ type@ invariant@ conditions@ from@ VCs."

37
let no_eval = Debug.register_flag "wp_no_eval"
Andrei Paskevich's avatar
Andrei Paskevich committed
38
  ~desc:"Do@ not@ simplify@ pattern@ matching@ on@ record@ datatypes@ in@ VCs."
39

40
(** Marks *)
Andrei Paskevich's avatar
Andrei Paskevich committed
41 42 43 44

let ts_mark = create_tysymbol (id_fresh "'mark") [] None
let ty_mark = ty_app ts_mark []

45 46 47
let vtv_mark = vty_value (ity_pur ts_mark [])

let fresh_mark () = create_vsymbol (id_fresh "'mark") ty_mark
48

Andrei Paskevich's avatar
Andrei Paskevich committed
49 50 51 52 53 54 55 56
let fs_at =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "at") [ty; ty_mark] (Some ty)

let fs_old =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "old") [ty] (Some ty)

57 58
let th_mark_at =
  let uc = create_theory (id_fresh "WP builtins: at") in
Andrei Paskevich's avatar
Andrei Paskevich committed
59 60
  let uc = add_ty_decl uc ts_mark in
  let uc = add_param_decl uc fs_at in
61 62 63 64 65
  close_theory uc

let th_mark_old =
  let uc = create_theory (id_fresh "WP builtins: old") in
  let uc = use_export uc th_mark_at in
Andrei Paskevich's avatar
Andrei Paskevich committed
66 67 68
  let uc = add_param_decl uc fs_old in
  close_theory uc

69
let fs_now = create_lsymbol (id_fresh "%now") [] (Some ty_mark)
Andrei Paskevich's avatar
Andrei Paskevich committed
70 71
let t_now = fs_app fs_now [] ty_mark
let e_now = e_lapp fs_now [] (ity_pur ts_mark [])
Andrei Paskevich's avatar
Andrei Paskevich committed
72

73 74
(* [vs_old] appears in the postconditions given to the core API,
   which expects every vsymbol to be a pure part of a pvsymbol *)
75
let pv_old = create_pvsymbol (id_fresh "%old") vtv_mark
76 77
let vs_old = pv_old.pv_vs
let t_old  = t_var vs_old
78

Andrei Paskevich's avatar
Andrei Paskevich committed
79 80
let t_at_old t = t_app fs_at [t; t_old] t.t_ty

81 82
let ls_absurd = create_lsymbol (id_fresh "absurd") [] None
let t_absurd  = ps_app ls_absurd []
83

84
let mk_t_if f = t_if f t_bool_true t_bool_false
85
let to_term t = if t.t_ty = None then mk_t_if t else t
86

87 88
(* any vs in post/xpost is either a pvsymbol or a fresh mark *)
let vtv_of_vs vs =
89
  try (restore_pv vs).pv_vtv with Not_found -> vtv_mark
90 91 92

(* replace every occurrence of [old(t)] with [at(t,'old)] *)
let rec remove_old f = match f.t_node with
Andrei Paskevich's avatar
Andrei Paskevich committed
93
  | Tapp (ls,[t]) when ls_equal ls fs_old -> t_at_old (remove_old t)
94 95 96 97 98 99 100 101
  | _ -> t_map remove_old f

(* replace every occurrence of [at(t,'now)] with [t] *)
let rec remove_at f = match f.t_node with
  | Tapp (ls, [t; { t_node = Tapp (fs,[]) }])
    when ls_equal ls fs_at && ls_equal fs fs_now -> remove_at t
  | _ -> t_map remove_at f

102 103 104 105
(* replace [at(t,'old)] with [at(t,lab)] everywhere in formula [f] *)
let old_mark lab t = t_subst_single vs_old (t_var lab) t

(* replace [at(t,lab)] with [at(t,'now)] everywhere in formula [f] *)
Andrei Paskevich's avatar
Andrei Paskevich committed
106 107
let erase_mark lab t = t_subst_single lab t_now t

Andrei Paskevich's avatar
Andrei Paskevich committed
108 109
(* retreat to the point of the current postcondition's ['old] *)
let backstep fn q xq =
Andrei Paskevich's avatar
Andrei Paskevich committed
110 111 112
  let lab = fresh_mark () in
  let f = fn (old_mark lab q) (Mexn.map (old_mark lab) xq) in
  erase_mark lab f
113

114
(** WP utilities *)
115 116 117 118 119 120 121

let default_exn_post xs _ =
  let vs = create_vsymbol (id_fresh "result") (ty_of_ity xs.xs_ity) in
  create_post vs t_true

let default_post vty ef =
  let vs = create_vsymbol (id_fresh "result") (ty_of_vty vty) in
122
  create_post vs t_true, Mexn.mapi default_exn_post ef.eff_raises
123

124 125 126 127 128
let wp_label e f =
  let loc = if f.t_loc = None then e.e_loc else f.t_loc in
  let lab = Ident.Slab.union e.e_label f.t_label in
  t_label ?loc lab f

Andrei Paskevich's avatar
Andrei Paskevich committed
129
let expl_pre       = Ident.create_label "expl:precondition"
130
let expl_post      = Ident.create_label "expl:postcondition"
Andrei Paskevich's avatar
Andrei Paskevich committed
131
let expl_xpost     = Ident.create_label "expl:exceptional postcondition"
132
let expl_assume    = Ident.create_label "expl:assumption"
Andrei Paskevich's avatar
Andrei Paskevich committed
133 134
let expl_assert    = Ident.create_label "expl:assertion"
let expl_check     = Ident.create_label "expl:check"
135
let expl_type_inv  = Ident.create_label "expl:type invariant"
Andrei Paskevich's avatar
Andrei Paskevich committed
136 137
let expl_loop_init = Ident.create_label "expl:loop invariant init"
let expl_loop_keep = Ident.create_label "expl:loop invariant preservation"
138 139
let expl_loopvar   = Ident.create_label "expl:loop variant decrease"
let expl_variant   = Ident.create_label "expl:variant decrease"
140

141 142 143 144 145
let rec wp_expl l f = match f.t_node with
  | _ when Slab.mem Split_goal.stop_split f.t_label -> t_label_add l f
  | Tbinop (Tand,f1,f2) -> t_label_copy f (t_and (wp_expl l f1) (wp_expl l f2))
  | Teps _ -> t_label_add l f (* post-condition, push down later *)
  | _ -> f
146

147
let wp_and ~sym f1 f2 =
148 149
  if sym then t_and_simp f1 f2 else t_and_asym_simp f1 f2

150
let wp_ands ~sym fl =
151 152
  if sym then t_and_simp_l fl else t_and_asym_simp_l fl

153
let wp_implies f1 f2 = t_implies_simp f1 f2
154

155 156
let wp_let v t f = t_let_close_simp v t f

157 158
let wp_forall vl f = t_forall_close_simp vl [] f

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
let wp_forall_post v p f =
  (* we optimize for the case when a postcondition
     is of the form (... /\ result = t /\ ...) *)
  let rec down p = match p.t_node with
    | Tbinop (Tand,l,r) ->
        begin match down l with
          | None, _ ->
              let t, r = down r in
              t, t_label_copy p (t_and_simp l r)
          | t, l ->
              t, t_label_copy p (t_and_simp l r)
        end
    | Tapp (ps,[{t_node = Tvar u};t])
      when ls_equal ps ps_equ && vs_equal u v && not (Mvs.mem v t.t_vars) ->
        Some t, t_true
    | _ ->
        None, p
  in
  if ty_equal v.vs_ty ty_unit then
    t_subst_single v t_void (wp_implies p f)
  else match down p with
    | Some t, p -> wp_let v t (wp_implies p f)
    | _ -> wp_forall [v] (wp_implies p f)
182

Andrei Paskevich's avatar
Andrei Paskevich committed
183 184
(* regs_of_reads, and therefore regs_of_effect, only take into account
   reads in program expressions and ignore the variables in specification *)
185
(* dead code
186
let regs_of_reads  eff = Sreg.union eff.eff_reads eff.eff_ghostr
187
*)
188
let regs_of_writes eff = Sreg.union eff.eff_writes eff.eff_ghostw
189
(* dead code
190
let regs_of_effect eff = Sreg.union (regs_of_reads eff) (regs_of_writes eff)
191
*)
Andrei Paskevich's avatar
Andrei Paskevich committed
192
let exns_of_raises eff = Sexn.union eff.eff_raises eff.eff_ghostx
193

194 195
let open_post q =
  let v, f = open_post q in
196
  v, Slab.fold wp_expl q.t_label f
197

198 199 200 201 202 203 204 205 206 207 208
let open_unit_post q =
  let v, q = open_post q in
  t_subst_single v t_void q

let create_unit_post =
  let v = create_vsymbol (id_fresh "void") ty_unit in
  fun q -> create_post v q

let vs_result e =
  create_vsymbol (id_fresh ?loc:e.e_loc "result") (ty_of_vty e.e_vty)

209 210 211 212 213 214
(** WP state *)

type wp_env = {
  prog_known : Mlw_decl.known_map;
  pure_known : Decl.known_map;
  global_env : Env.env;
Andrei Paskevich's avatar
Andrei Paskevich committed
215 216 217 218 219
  ps_int_le  : Term.lsymbol;
  ps_int_ge  : Term.lsymbol;
  ps_int_lt  : Term.lsymbol;
  ps_int_gt  : Term.lsymbol;
  fs_int_pl  : Term.lsymbol;
220
  letrec_var : term list Mint.t;
221
}
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
let decrease_alg ?loc env old_t t =
  let oty = t_type old_t in
  let nty = t_type t in
  let quit () =
    Loc.errorm ?loc "no default order for %a" Pretty.print_term t in
  let ts = match oty with { ty_node = Tyapp (ts,_) } -> ts | _ -> quit () in
  let csl = Decl.find_constructors env.pure_known ts in
  if csl = [] then quit ();
  let sbs = ty_match Mtv.empty (ty_app ts (List.map ty_var ts.ts_args)) oty in
  let add_arg acc fty =
    let fty = ty_inst sbs fty in
    if ty_equal fty nty then
      let vs = create_vsymbol (id_fresh "f") nty in
      t_or_simp acc (t_equ (t_var vs) t), pat_var vs
    else acc, pat_wild fty in
  let add_cs (cs,_) =
    let f, pl = Util.map_fold_left add_arg t_false cs.ls_args in
    t_close_branch (pat_app cs pl oty) f in
  t_case old_t (List.map add_cs csl)

let decrease_rel ?loc env old_t t = function
  | Some ls -> ps_app ls [t; old_t]
  | None when ty_equal (t_type t) ty_int ->
      t_and
        (ps_app env.ps_int_le [t_int_const "0"; old_t])
        (ps_app env.ps_int_lt [t; old_t])
  | None -> decrease_alg ?loc env old_t t

251
let decrease loc lab env olds varl =
252
  let rec decr pr olds varl = match olds, varl with
253 254 255 256 257 258 259 260 261 262
    | [], [] -> (* empty variant *)
        t_true
    | [old_t], [t, rel] ->
        t_and_simp pr (decrease_rel ?loc env old_t t rel)
    | old_t::_, (t,_)::_ when not (oty_equal old_t.t_ty t.t_ty) ->
        Loc.errorm ?loc "cannot use lexicographic ordering"
    | old_t::olds, (t,rel)::varl ->
        let dt = t_and_simp pr (decrease_rel ?loc env old_t t rel) in
        let pr = t_and_simp pr (t_equ old_t t) in
        t_or_simp dt (decr pr olds varl)
263
    | _ -> assert false
Andrei Paskevich's avatar
Andrei Paskevich committed
264
  in
265 266 267 268
  t_label ?loc lab (decr t_true olds varl)

let expl_variant = Slab.add Split_goal.stop_split (Slab.singleton expl_variant)
let expl_loopvar = Slab.add Split_goal.stop_split (Slab.singleton expl_loopvar)
Andrei Paskevich's avatar
Andrei Paskevich committed
269

270 271
(** Reconstruct pure values after writes *)

272 273 274 275 276
let analyze_var fn_down fn_join lkm km vs ity =
  let branch (cs,vtvl) =
    let mk_var vtv = create_vsymbol (id_fresh "y") (ty_of_ity vtv.vtv_ity) in
    let vars = List.map mk_var vtvl in
    let t = fn_join cs (List.map2 fn_down vars vtvl) vs.vs_ty in
277 278
    let pat = pat_app cs (List.map pat_var vars) vs.vs_ty in
    t_close_branch pat t in
279
  t_case (t_var vs) (List.map branch (Mlw_decl.inst_constructors lkm km ity))
280

281
let update_var env mreg vs =
282
  let rec update vs { vtv_ity = ity; vtv_mut = mut } =
283 284 285 286 287
    (* are we a mutable variable? *)
    let get_vs r = Mreg.find_def vs r mreg in
    let vs = Util.option_apply vs get_vs mut in
    (* should we update our value further? *)
    let check_reg r _ = reg_occurs r ity.ity_vars in
288
    if ity_pure ity || not (Mreg.exists check_reg mreg) then t_var vs
289
    else analyze_var update fs_app env.pure_known env.prog_known vs ity
290
  in
291
  update vs (vtv_of_vs vs)
292

Andrei Paskevich's avatar
Andrei Paskevich committed
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
(* substitute the updated values in the "contemporary" variables *)
let rec subst_at_now now m t = match t.t_node with
  | Tvar vs when now ->
      begin try t_var (Mvs.find vs m) with Not_found -> t end
  | Tapp (ls, _) when ls_equal ls fs_old -> assert false
  | Tapp (ls, [_; mark]) when ls_equal ls fs_at ->
      let now = match mark.t_node with
        | Tvar vs when vs_equal vs vs_old -> assert false
        | Tapp (ls,[]) when ls_equal ls fs_now -> true
        | _ -> false in
      t_map (subst_at_now now m) t
  | Tlet _ | Tcase _ | Teps _ | Tquant _ ->
      (* do not open unless necessary *)
      let m = Mvs.set_inter m t.t_vars in
      if Mvs.is_empty m then t else
      t_map (subst_at_now now m) t
  | _ ->
      t_map (subst_at_now now m) t

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
(* quantify over all references in eff
   eff : effect
   f   : formula

   let eff = { rho1, ..., rhon }
   we collect in vars all variables involving these regions
   let vars = { v1, ..., vm }

     forall r1:ty(rho1). ... forall rn:ty(rhon).
     let v'1 = update v1 r1...rn in
     ...
     let v'm = update vm r1...rn in
     f[vi <- v'i]
*)

let model1_lab = Slab.singleton (create_label "model:1")
let model2_lab = Slab.singleton (create_label "model:quantify(2)")
329 330
let model3_lab = Slab.singleton (create_label "model:cond")

331 332
let mk_var id label ty = create_vsymbol (id_clone ~label id) ty

333 334
let quantify env regs f =
  (* mreg : updated region -> vs *)
335
  let get_var reg () =
336
    let test vs _ id = match vtv_of_vs vs with
337 338 339 340 341 342
      | { vtv_ity = { ity_node = Ityapp (_,_,[r]) }}
      | { vtv_mut = Some r } when reg_equal r reg -> vs.vs_name
      | _ -> id in
    let id = Mvs.fold test f.t_vars reg.reg_name in
    mk_var id model1_lab (ty_of_ity reg.reg_ity)
  in
343
  let mreg = Mreg.mapi get_var regs in
344
  (* update all program variables involving these regions *)
345
  let update_var vs _ = match update_var env mreg vs with
346 347 348 349 350 351 352
    | { t_node = Tvar nv } when vs_equal vs nv -> None
    | t -> Some t in
  let vars = Mvs.mapi_filter update_var f.t_vars in
  (* vv' : old vs -> new vs *)
  let new_var vs _ = mk_var vs.vs_name model2_lab vs.vs_ty in
  let vv' = Mvs.mapi new_var vars in
  (* quantify *)
353
  let update v t f = wp_let (Mvs.find v vv') t f in
Andrei Paskevich's avatar
Andrei Paskevich committed
354
  let f = Mvs.fold update vars (subst_at_now true vv' f) in
355
  wp_forall (List.rev (Mreg.values mreg)) f
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
(** Invariants *)

let get_invariant km t =
  let ty = t_type t in
  let ts = match ty.ty_node with
    | Tyapp (ts,_) -> ts
    | _ -> assert false in
  let rec find_td = function
    | (its,_,inv) :: _ when ts_equal ts its.its_pure -> inv
    | _ :: tdl -> find_td tdl
    | [] -> assert false in
  let pd = Mid.find ts.ts_name km in
  let inv = match pd.Mlw_decl.pd_node with
    | Mlw_decl.PDdata tdl -> find_td tdl
    | _ -> assert false in
  let sbs = Ty.ty_match Mtv.empty (t_type inv) ty in
  let u, p = open_post (t_ty_subst sbs Mvs.empty inv) in
374
  wp_expl expl_type_inv (t_subst_single u t p)
375 376 377 378 379

let ps_inv = Term.create_psymbol (id_fresh "inv")
  [ty_var (create_tvsymbol (id_fresh "a"))]

let full_invariant lkm km vs ity =
380
  let rec update vs { vtv_ity = ity } =
381 382 383 384 385 386 387 388 389 390
    if not (ity_inv ity) then t_true else
    (* what is our current invariant? *)
    let f = match ity.ity_node with
      | Ityapp (its,_,_) when its.its_inv ->
          if Debug.test_flag no_track
          then get_invariant km (t_var vs)
          else ps_app ps_inv [t_var vs]
      | _ -> t_true in
    (* what are our sub-invariants? *)
    let join _ fl _ = wp_ands ~sym:true fl in
391
    let g = analyze_var update join lkm km vs ity in
392 393 394
    (* put everything together *)
    wp_and ~sym:true f g
  in
395
  update vs (vty_value ity)
396 397

(** Value tracking *)
398 399 400

type point = int
type value = point list Mls.t (* constructor -> field list *)
401

402
type state = {
403 404 405 406
  st_km   : Mlw_decl.known_map;
  st_lkm  : Decl.known_map;
  st_mem  : (point, value) Hashtbl.t;
  st_next : point ref;
407 408
}

409
(* dead code
410 411 412
type names = point Mvs.t  (* variable -> point *)
type condition = lsymbol Mint.t (* point -> constructor *)
type lesson = condition list Mint.t (* point -> conditions for invariant *)
413
*)
414 415 416 417 418 419

let empty_state lkm km = {
  st_km   = km;
  st_lkm  = lkm;
  st_mem  = Hashtbl.create 5;
  st_next = ref 0;
420 421 422
}

let next_point state =
423
  let res = !(state.st_next) in incr state.st_next; res
424

425
let make_value state ty =
426 427 428
  let get_p _ = next_point state in
  let new_cs cs = List.map get_p cs.ls_args in
  let add_cs m (cs,_) = Mls.add cs (new_cs cs) m in
429
  let csl = match ty.ty_node with
430 431
    | Tyapp (ts,_) -> Decl.find_constructors state.st_lkm ts
    | _ -> [] in
432 433
  List.fold_left add_cs Mls.empty csl

434
let match_point state ty p =
435
  try Hashtbl.find state.st_mem p with Not_found ->
436
  let value = make_value state ty in
437 438
  if not (Mls.is_empty value) then
    Hashtbl.replace state.st_mem p value;
439 440
  value

441 442 443 444 445 446 447 448 449 450 451 452 453 454
let rec open_pattern state names value p pat = match pat.pat_node with
  | Pwild -> names
  | Pvar vs -> Mvs.add vs p names
  | Papp (cs,patl) ->
      let add_pat names p pat =
        let value = match_point state pat.pat_ty p in
        open_pattern state names value p pat in
      List.fold_left2 add_pat names (Mls.find cs value) patl
  | Por _ ->
      let add_vs vs s = Mvs.add vs (next_point state) s in
      Svs.fold add_vs pat.pat_vars names
  | Pas (pat,vs) ->
      open_pattern state (Mvs.add vs p names) value p pat

455 456 457 458
let rec point_of_term state names t = match t.t_node with
  | Tvar vs ->
      Mvs.find vs names
  | Tapp (ls, tl) ->
459
      begin match Mid.find ls.ls_name state.st_lkm with
460 461 462 463 464 465 466 467 468
        | { Decl.d_node = Decl.Ddata tdl } ->
            let is_cs (cs,_) = ls_equal ls cs in
            let is_cs (_,csl) = List.exists is_cs csl in
            if List.exists is_cs tdl
            then point_of_constructor state names ls tl
            else point_of_projection state names ls (List.hd tl)
        | _ -> next_point state
      end
  | Tlet (t1, bt) ->
469
      let p1 = point_of_term state names t1 in
470
      let v, t2 = t_open_bound bt in
471 472 473 474 475 476 477
      let names = Mvs.add v p1 names in
      point_of_term state names t2
  | Tcase (t1,[br]) ->
      let pat, t2 = t_open_branch br in
      let p1 = point_of_term state names t1 in
      let value = match_point state pat.pat_ty p1 in
      let names = open_pattern state names value p1 pat in
478
      point_of_term state names t2
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
  | Tcase (t1,bl) ->
      (* we treat here the case of a value update: the value
         of each branch must be a distinct constructor *)
      let p = next_point state in
      let ty = of_option t.t_ty in
      let p1 = point_of_term state names t1 in
      let value = match_point state (of_option t1.t_ty) p1 in
      let branch acc br =
        let pat, t2 = t_open_branch br in
        let ls = match t2.t_node with
          | Tapp (ls,_) -> ls | _ -> raise Exit in
        let names = open_pattern state names value p1 pat in
        let p2 = point_of_term state names t2 in
        let v2 = match_point state ty p2 in
        Mls.add_new Exit ls (Mls.find_exn Exit ls v2) acc
      in
      begin try
        let value = List.fold_left branch Mls.empty bl in
        let value = Mls.set_union value (make_value state ty) in
498
        Hashtbl.replace state.st_mem p value
499 500 501
      with Exit -> () end;
      p
  | Tconst _ | Tif _ | Teps _ -> next_point state
502 503 504 505
  | Tquant _ | Tbinop _ | Tnot _ | Ttrue | Tfalse -> assert false

and point_of_constructor state names ls tl =
  let p = next_point state in
506 507 508
  let pl = List.map (point_of_term state names) tl in
  let value = make_value state (of_option ls.ls_value) in
  let value = Mls.add ls pl value in
509
  Hashtbl.replace state.st_mem p value;
510 511 512
  p

and point_of_projection state names ls t1 =
513 514
  let ty = of_option t1.t_ty in
  let csl = match ty.ty_node with
515
    | Tyapp (ts,_) -> Decl.find_constructors state.st_lkm ts
516 517 518
    | _ -> assert false in
  match csl with
    | [cs,pjl] ->
519
        let p1 = point_of_term state names t1 in
520
        let value = match_point state ty p1 in
521 522 523 524 525 526 527
        let rec find_p pjl pl = match pjl, pl with
          | Some pj::_, p::_ when ls_equal ls pj -> p
          | _::pjl, _::pl -> find_p pjl pl
          | _ -> assert false in
        find_p pjl (Mls.find cs value)
    | _ -> next_point state (* more than one, can't choose *)

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
let rec track_values state names lesson cond f = match f.t_node with
  | Tapp (ls, [t1]) when ls_equal ls ps_inv ->
      let p1 = point_of_term state names t1 in
      let condl = Mint.find_def [] p1 lesson in
      let contains c1 c2 = Mint.submap (fun _ -> ls_equal) c2 c1 in
      if List.exists (contains cond) condl then
        lesson, t_true
      else
        let good c = not (contains c cond) in
        let condl = List.filter good condl in
        let l = Mint.add p1 (cond::condl) lesson in
        l, get_invariant state.st_km t1
  | Tbinop (Timplies, f1, f2) ->
      let l, f1 = track_values state names lesson cond f1 in
      let _, f2 = track_values state names l cond f2 in
      lesson, t_label_copy f (t_implies_simp f1 f2)
  | Tbinop (Tand, f1, f2) ->
      let l, f1 = track_values state names lesson cond f1 in
      let l, f2 = track_values state names l cond f2 in
      l, t_label_copy f (t_and_simp f1 f2)
  | Tif (fc, f1, f2) ->
      let _, f1 = track_values state names lesson cond f1 in
      let _, f2 = track_values state names lesson cond f2 in
      lesson, t_label_copy f (t_if_simp fc f1 f2)
  | Tcase (t1, bl) ->
      let p1 = point_of_term state names t1 in
      let value = match_point state (of_option t1.t_ty) p1 in
      let is_pat_var = function
        | { pat_node = Pvar _ } -> true | _ -> false in
      let branch l br =
        let pat, f1, cb = t_open_branch_cb br in
        let learn, cond = match bl, pat.pat_node with
          | [_], _ -> true, cond (* one branch, can learn *)
          | _, Papp (cs, pl) when List.for_all is_pat_var pl ->
              (try true, Mint.add_new Exit p1 cs cond (* can learn *)
              with Exit -> false, cond) (* contradiction, cannot learn *)
          | _, _ -> false, cond (* complex pattern, will not learn *)
        in
        let names = open_pattern state names value p1 pat in
        let m, f1 = track_values state names lesson cond f1 in
        let l = if learn then m else l in
        l, cb pat f1
      in
      let l, bl = Util.map_fold_left branch lesson bl in
      l, t_label_copy f (t_case t1 bl)
  | Tlet (t1, bf) ->
      let p1 = point_of_term state names t1 in
      let v, f1, cb = t_open_bound_cb bf in
      let names = Mvs.add v p1 names in
      let l, f1 = track_values state names lesson cond f1 in
      l, t_label_copy f (t_let_simp t1 (cb v f1))
  | Tquant (Tforall, qf) ->
      let vl, trl, f1, cb = t_open_quant_cb qf in
      let add_vs s vs = Mvs.add vs (next_point state) s in
      let names = List.fold_left add_vs names vl in
      let l, f1 = track_values state names lesson cond f1 in
      l, t_label_copy f (t_forall_simp (cb vl trl f1))
  | Tbinop ((Tor|Tiff),_,_) | Tquant (Texists,_)
  | Tapp _ | Tnot _ | Ttrue | Tfalse -> lesson, f
  | Tvar _ | Tconst _ | Teps _ -> assert false

let track_values lkm km f =
  let state = empty_state lkm km in
  let _, f = track_values state Mvs.empty Mint.empty Mint.empty f in
  f
593

594 595
(** Weakest preconditions *)

596
let rec wp_expr env e q xq =
Andrei Paskevich's avatar
Andrei Paskevich committed
597
  let f = wp_desc env e q xq in
598
  if Debug.test_flag debug then begin
599
    Format.eprintf "@[--------@\n@[<hov 2>e = %a@]@\n" Mlw_pretty.print_expr e;
600 601 602
    Format.eprintf "@[<hov 2>q = %a@]@\n" Pretty.print_term q;
    Format.eprintf "@[<hov 2>f = %a@]@\n----@]@." Pretty.print_term f;
  end;
603
  f
604

605
and wp_desc env e q xq = match e.e_node with
606 607 608
  | Elogic t ->
      let v, q = open_post q in
      let t = wp_label e t in
609 610 611
      (* NOTE: if you replace this t_subst by t_let or anything else,
         you must handle separately the case "let mark = 'now in ...",
         which requires 'now to be substituted for mark in q *)
612
      t_subst_single v (to_term t) q
Andrei Paskevich's avatar
Andrei Paskevich committed
613 614 615
  | Evalue pv ->
      let v, q = open_post q in
      let t = wp_label e (t_var pv.pv_vs) in
616
      t_subst_single v t q
617 618 619
  | Earrow _ ->
      let q = open_unit_post q in
      (* wp_label e *) q (* FIXME? *)
620 621 622 623 624 625 626
  | Elet ({ let_sym = LetV v; let_expr = e1 }, e2)
    when Util.option_eq Loc.equal v.pv_vs.vs_name.id_loc e1.e_loc ->
    (* we push the label down, past the implicitly inserted "let" *)
      let w = wp_expr env (e_label_copy e e2) q xq in
      let q = create_post v.pv_vs w in
      wp_expr env e1 q xq
  | Elet ({ let_sym = LetV v; let_expr = e1 }, e2) ->
627
      let w = wp_expr env e2 q xq in
628
      let q = create_post v.pv_vs w in
629
      wp_label e (wp_expr env e1 q xq)
630 631 632 633
  | Elet ({ let_sym = LetA _; let_expr = e1 }, e2) ->
      let w = wp_expr env e2 q xq in
      let q = create_unit_post w in
      wp_label e (wp_expr env e1 q xq)
634 635
  | Erec (fdl, e1) ->
      let fr = wp_rec_defn env fdl in
636 637 638
      let fe = wp_expr env e1 q xq in
      let fr = wp_ands ~sym:true fr in
      wp_label e (wp_and ~sym:true fr fe)
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
  | Eif (e1, e2, e3) ->
      let res = vs_result e1 in
      let test = t_equ (t_var res) t_bool_true in
      let test = t_label ?loc:e1.e_loc model3_lab test in
      (* if both branches are pure, do not split *)
      let w =
        let get_term e = match e.e_node with
          | Elogic t -> to_term t
          | Evalue v -> t_var v.pv_vs
          | _ -> raise Exit in
        try
          let r2 = get_term e2 in
          let r3 = get_term e3 in
          let v, q = open_post q in
          t_subst_single v (t_if_simp test r2 r3) q
        with Exit ->
          let w2 = wp_expr env e2 q xq in
          let w3 = wp_expr env e3 q xq in
          t_if_simp test w2 w3
      in
      let q = create_post res w in
      wp_label e (wp_expr env e1 q xq)
661 662 663 664 665 666 667 668 669 670 671
  (* optimization for the particular case let _ = e1 in e2 *)
  | Ecase (e1, [{ ppat_pattern = { pat_node = Term.Pwild }}, e2]) ->
      let w = wp_expr env e2 q xq in
      let q = create_post (vs_result e1) w in
      wp_label e (wp_expr env e1 q xq)
  (* optimization for the particular case let () = e1 in e2 *)
  | Ecase (e1, [{ ppat_pattern = { pat_node = Term.Papp (cs,[]) }}, e2])
    when ls_equal cs fs_void ->
      let w = wp_expr env e2 q xq in
      let q = create_unit_post w in
      wp_label e (wp_expr env e1 q xq)
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
  | Ecase (e1, bl) ->
      let res = vs_result e1 in
      let branch ({ ppat_pattern = pat }, e) =
        t_close_branch pat (wp_expr env e q xq) in
      let w = t_case (t_var res) (List.map branch bl) in
      let q = create_post res w in
      wp_label e (wp_expr env e1 q xq)
  | Eghost e1 ->
      wp_label e (wp_expr env e1 q xq)
  | Eraise (xs, e1) ->
      let q = try Mexn.find xs xq with
        Not_found -> assert false in
      wp_label e (wp_expr env e1 q xq)
  | Etry (e1, bl) ->
      let branch (xs,v,e) acc =
        let w = wp_expr env e q xq in
        let q = create_post v.pv_vs w in
        Mexn.add xs q acc in
      let xq = List.fold_right branch bl xq in
      wp_label e (wp_expr env e1 q xq)
692 693
  | Eassert (Aassert, f) ->
      let q = open_unit_post q in
694
      let f = wp_expl expl_assert f in
695 696 697
      wp_and ~sym:false (wp_label e f) q
  | Eassert (Acheck, f) ->
      let q = open_unit_post q in
698
      let f = wp_expl expl_check f in
699 700 701
      wp_and ~sym:true (wp_label e f) q
  | Eassert (Aassume, f) ->
      let q = open_unit_post q in
702
      let f = wp_expl expl_assume f in
703
      wp_implies (wp_label e f) q
Andrei Paskevich's avatar
Andrei Paskevich committed
704
  | Eabsurd ->
705
      wp_label e t_absurd
706 707
  | Eany spec ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
Andrei Paskevich's avatar
Andrei Paskevich committed
708 709
      let p = t_label ?loc:e.e_loc p.t_label p in
      (* TODO: propagate call labels into tyc.c_post *)
710
      let w = wp_abstract env spec.c_effect spec.c_post spec.c_xpost q xq in
711
      wp_and ~sym:false p w
712 713
  | Eapp (e1,_,spec) ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
714
      let p = t_label ?loc:e.e_loc p.t_label p in
715
      let d =
716 717
        if spec.c_letrec = 0 || spec.c_variant = [] then t_true else
        let olds = Mint.find_def [] spec.c_letrec env.letrec_var in
718
        if olds = [] then t_true (* we are out of letrec *) else
719
        decrease e.e_loc expl_variant env olds spec.c_variant in
720
      (* TODO: propagate call labels into tyc.c_post *)
721
      let w = wp_abstract env spec.c_effect spec.c_post spec.c_xpost q xq in
722
      let w = wp_and ~sym:true d (wp_and ~sym:false p w) in
723 724
      let q = create_unit_post w in
      wp_expr env e1 q xq (* FIXME? should (wp_label e) rather be here? *)
725 726 727 728 729
  | Eabstr (e1, spec) ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
      let w1 = backstep (wp_expr env e1) spec.c_post spec.c_xpost in
      let w2 = wp_abstract env e1.e_effect spec.c_post spec.c_xpost q xq in
      wp_and ~sym:false p (wp_and ~sym:true (wp_label e w1) w2)
730 731 732 733 734 735 736 737 738 739 740 741 742 743
  | Eassign (e1, reg, pv) ->
      let rec get_term d = match d.e_node with
        | Elogic t -> t
        | Evalue v -> t_var v.pv_vs
        | Eghost e | Elet (_,e) | Erec (_,e) -> get_term e
        | _ -> Loc.errorm ?loc:e.e_loc
            "Cannot compute the WP for this assignment"
      in
      let f = t_equ (get_term e1) (t_var pv.pv_vs) in
      let c_q = create_unit_post f in
      let eff = eff_write eff_empty reg in
      let w = wp_abstract env eff c_q Mexn.empty q xq in
      let q = create_post (vs_result e1) w in
      wp_label e (wp_expr env e1 q xq)
Andrei Paskevich's avatar
Andrei Paskevich committed
744 745 746
  | Eloop (inv, varl, e1) ->
      (* TODO: what do we do about well-foundness? *)
      let i = wp_expl expl_loop_keep inv in
747
      let olds = List.map (fun (t,_) -> t_at_old t) varl in
748
      let d = decrease e.e_loc expl_loopvar env olds varl in
Andrei Paskevich's avatar
Andrei Paskevich committed
749
      let q = create_unit_post (wp_and ~sym:true i d) in
Andrei Paskevich's avatar
Andrei Paskevich committed
750
      let w = backstep (wp_expr env e1) q xq in
Andrei Paskevich's avatar
Andrei Paskevich committed
751 752 753 754
      let regs = regs_of_writes e1.e_effect in
      let w = quantify env regs (wp_implies inv w) in
      let i = wp_expl expl_loop_init inv in
      wp_label e (wp_and ~sym:true i w)
Andrei Paskevich's avatar
Andrei Paskevich committed
755 756 757 758 759 760 761 762 763 764 765 766 767 768
  | Efor ({pv_vs = x}, ({pv_vs = v1}, d, {pv_vs = v2}), inv, e1) ->
      (* wp(for x = v1 to v2 do inv { I(x) } e1, Q, R) =
             v1 > v2  -> Q
         and v1 <= v2 ->     I(v1)
                         and forall S. forall i. v1 <= i <= v2 ->
                                                 I(i) -> wp(e1, I(i+1), R)
                                       and I(v2+1) -> Q *)
      let gt, le, incr = match d with
        | Mlw_expr.To     -> env.ps_int_gt, env.ps_int_le, t_int_const "1"
        | Mlw_expr.DownTo -> env.ps_int_lt, env.ps_int_ge, t_int_const "-1" in
      let v1_gt_v2 = ps_app gt [t_var v1; t_var v2] in
      let v1_le_v2 = ps_app le [t_var v1; t_var v2] in
      let q = open_unit_post q in
      let wp_init =
769
        wp_expl expl_loop_init (t_subst_single x (t_var v1) inv) in
Andrei Paskevich's avatar
Andrei Paskevich committed
770
      let wp_step =
771 772 773
        let next = fs_app env.fs_int_pl [t_var x; incr] ty_int in
        let post = wp_expl expl_loop_keep (t_subst_single x next inv) in
        wp_expr env e1 (create_unit_post post) xq in
Andrei Paskevich's avatar
Andrei Paskevich committed
774 775 776 777 778 779 780
      let wp_last =
        let v2pl1 = fs_app env.fs_int_pl [t_var v2; incr] ty_int in
        wp_implies (t_subst_single x v2pl1 inv) q in
      let wp_good = wp_and ~sym:true
        wp_init
        (quantify env (regs_of_writes e1.e_effect)
           (wp_and ~sym:true
781
              (wp_forall [x] (wp_implies
Andrei Paskevich's avatar
Andrei Paskevich committed
782 783
                (wp_and ~sym:true (ps_app le [t_var v1; t_var x])
                                  (ps_app le [t_var x;  t_var v2]))
784
                (wp_implies inv wp_step)))
Andrei Paskevich's avatar
Andrei Paskevich committed
785 786 787 788 789 790 791
              wp_last))
      in
      let wp_full = wp_and ~sym:true
        (wp_implies v1_gt_v2 q)
        (wp_implies v1_le_v2 wp_good)
      in
      wp_label e wp_full
792

Andrei Paskevich's avatar
Andrei Paskevich committed
793 794 795 796 797 798 799
and wp_abstract env c_eff c_q c_xq q xq =
  let regs = regs_of_writes c_eff in
  let exns = exns_of_raises c_eff in
  let quantify_post c_q q =
    let v, f = open_post q in
    let c_v, c_f = open_post c_q in
    let c_f = t_subst_single c_v (t_var v) c_f in
800
    let f = wp_forall_post v c_f f in
Andrei Paskevich's avatar
Andrei Paskevich committed
801 802 803 804 805 806 807
    quantify env regs f
  in
  let quantify_xpost _ c_xq xq =
    Some (quantify_post c_xq xq) in
  let proceed c_q c_xq =
    let f = quantify_post c_q q in
    (* every xs in exns is guaranteed to be in c_xq and xq *)
808 809
    assert (Mexn.set_submap exns xq);
    assert (Mexn.set_submap exns c_xq);
Andrei Paskevich's avatar
Andrei Paskevich committed
810 811 812
    let xq = Mexn.set_inter xq exns in
    let c_xq = Mexn.set_inter c_xq exns in
    let mexn = Mexn.inter quantify_xpost c_xq xq in
813
    (* FIXME? This wp_ands is asymmetric in Pgm_wp *)
Andrei Paskevich's avatar
Andrei Paskevich committed
814 815
    wp_ands ~sym:true (f :: Mexn.values mexn)
  in
Andrei Paskevich's avatar
Andrei Paskevich committed
816
  backstep proceed c_q c_xq
Andrei Paskevich's avatar
Andrei Paskevich committed
817

818
and wp_fun_defn env { fun_ps = ps ; fun_lambda = l } =
819
  let lab = fresh_mark () and c = l.l_spec in
820 821 822
  let add_arg sbs pv = ity_match sbs pv.pv_vtv.vtv_ity pv.pv_vtv.vtv_ity in
  let subst = List.fold_left add_arg ps.ps_subst l.l_args in
  let regs = Mreg.map (fun _ -> ()) subst.ity_subst_reg in
823
  let args = List.map (fun pv -> pv.pv_vs) l.l_args in
824 825
  let env =
    if c.c_letrec = 0 || c.c_variant = [] then env else
826
    let lab = t_var lab in
Andrei Paskevich's avatar
Andrei Paskevich committed
827
    let t_at_lab (t,_) = t_app fs_at [t; lab] t.t_ty in
828
    let tl = List.map t_at_lab c.c_variant in
829 830
    let lrv = Mint.add c.c_letrec tl env.letrec_var in
    { env with letrec_var = lrv } in
831
  let q = old_mark lab (wp_expl expl_post c.c_post) in
832
  let conv p = old_mark lab (wp_expl expl_xpost p) in
833 834
  let f = wp_expr env l.l_expr q (Mexn.map conv c.c_xpost) in
  let f = wp_implies c.c_pre (erase_mark lab f) in
Andrei Paskevich's avatar
Andrei Paskevich committed
835
  wp_forall args (quantify env regs f)
836

837
and wp_rec_defn env fdl = List.map (wp_fun_defn env) fdl
838

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
(***
let bool_to_prop env f =
  let ts_bool  = find_ts ~pure:true env "bool" in
  let ls_andb  = find_ls ~pure:true env "andb" in
  let ls_orb   = find_ls ~pure:true env "orb" in
  let ls_notb  = find_ls ~pure:true env "notb" in
  let ls_True  = find_ls ~pure:true env "True" in
  let ls_False = find_ls ~pure:true env "False" in
  let t_True   = fs_app ls_True [] (ty_app ts_bool []) in
  let is_bool ls = ls_equal ls ls_True || ls_equal ls ls_False in
  let rec t_iff_bool f1 f2 = match f1.t_node, f2.t_node with
    | Tnot f1, _ -> t_not_simp (t_iff_bool f1 f2)
    | _, Tnot f2 -> t_not_simp (t_iff_bool f1 f2)
    | Tapp (ps1, [t1; { t_node = Tapp (ls1, []) }]),
      Tapp (ps2, [t2; { t_node = Tapp (ls2, []) }])
      when ls_equal ps1 ps_equ && ls_equal ps2 ps_equ &&
           is_bool ls1 && is_bool ls2 ->
        if ls_equal ls1 ls2 then t_equ t1 t2 else t_neq t1 t2
    | _ ->
        t_iff_simp f1 f2
  in
  let rec t_btop t = t_label ?loc:t.t_loc t.t_label (* t_label_copy? *)
    (match t.t_node with
    | Tif (f,t1,t2) ->
        t_if_simp (f_btop f) (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1;t2]) when ls_equal ls ls_andb ->
        t_and_simp (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1;t2]) when ls_equal ls ls_orb ->
        t_or_simp (t_btop t1) (t_btop t2)
    | Tapp (ls, [t1]) when ls_equal ls ls_notb ->
        t_not_simp (t_btop t1)
    | Tapp (ls, []) when ls_equal ls ls_True ->
        t_true
    | Tapp (ls, []) when ls_equal ls ls_False ->
        t_false
    | _ ->
        t_equ_simp (f_btop t) t_True)
  and f_btop f = match f.t_node with
    | Tapp (ls, [{t_ty = Some {ty_node = Tyapp (ts, [])}} as l; r])
      when ls_equal ls ps_equ && ts_equal ts ts_bool ->
        t_label ?loc:f.t_loc f.t_label (t_iff_bool (t_btop l) (t_btop r))
    | _ ->
        t_map_simp f_btop f
  in
  f_btop f
***)
885

886 887 888 889 890 891 892
(* replace t_absurd with t_false *)
let rec unabsurd f = match f.t_node with
  | Tapp (ls, []) when ls_equal ls ls_absurd ->
      t_label_copy f t_false
  | _ ->
      t_map unabsurd f

893
let add_wp_decl km name f uc =
894
  (* prepare a proposition symbol *)
Andrei Paskevich's avatar
Andrei Paskevich committed
895
  let s = "WP_parameter " ^ name.id_string in
896
  let lab = Ident.create_label ("expl:parameter " ^ name.id_string) in
897 898 899 900
  let label = Slab.add lab name.id_label in
  let id = id_fresh ~label ?loc:name.id_loc s in
  let pr = create_prsymbol id in
  (* prepare the VC formula *)
901
  let f = remove_at f in
902 903 904
  (* let f = bool_to_prop uc f in *)
  let f = unabsurd f in
  (* get a known map with tuples added *)
905 906 907
  let lkm = Theory.get_known uc in
  (* remove redundant invariants *)
  let f = if Debug.test_flag no_track then f else track_values lkm km f in
908
  (* simplify f *)
909 910
  let f = if Debug.test_flag no_eval then f else
    Eval_match.eval_match ~inline:Eval_match.inline_nonrec_linear lkm f in
911 912 913 914
  (* printf "wp: f=%a@." print_term f; *)
  let d = create_prop_decl Pgoal pr f in
  Theory.add_decl uc d

Andrei Paskevich's avatar
Andrei Paskevich committed
915 916 917 918 919
let mk_env env km th =
  let th_int = Env.find_theory env ["int"] "Int" in
  { prog_known = km;
    pure_known = Theory.get_known th;
    global_env = env;
Andrei Paskevich's avatar
Andrei Paskevich committed
920 921 922 923 924
    ps_int_le  = Theory.ns_find_ls th_int.th_export ["infix <="];
    ps_int_ge  = Theory.ns_find_ls th_int.th_export ["infix >="];
    ps_int_lt  = Theory.ns_find_ls th_int.th_export ["infix <"];
    ps_int_gt  = Theory.ns_find_ls th_int.th_export ["infix >"];
    fs_int_pl  = Theory.ns_find_ls th_int.th_export ["infix +"];
925
    letrec_var = Mint.empty;
Andrei Paskevich's avatar
Andrei Paskevich committed
926
  }
927

928
let wp_let env km th { let_sym = lv; let_expr = e } =
929 930
  let env = mk_env env km th in
  let q, xq = default_post e.e_vty e.e_effect in
931
  let f = wp_expr env e q xq in
932 933 934 935
  let f = wp_forall (Mvs.keys f.t_vars) f in
  let id = match lv with
    | LetV pv -> pv.pv_vs.vs_name
    | LetA ps -> ps.ps_name in
936
  add_wp_decl km id f th
937

938
let wp_rec env km th fdl =
939
  let env = mk_env env km th in
940
  let fl = wp_rec_defn env fdl in
941
  let add_one th d f =
942
    Debug.dprintf debug "wp %s = %a@\n----------------@."
943
      d.fun_ps.ps_name.id_string Pretty.print_term f;
944
    let f = wp_forall (Mvs.keys f.t_vars) f in
945
    add_wp_decl km d.fun_ps.ps_name f th
946
  in
947
  List.fold_left2 add_one th fdl fl
948

949
let wp_val _env _km th _lv = th
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978

(*****************************************************************************)

(* Efficient Weakest Preconditions

  Following Leino, see
  http://research.microsoft.com/apps/pubs/default.aspx?id=70052

  Roughly, the idea is the following. From a program expression e, we compute
  two formulas OK and N. Formula OK means ``the execution of e does not go
  wrong'' and formula N is an input-output relation between initial and
  final state of e's execution.

  Thus the weakest precondition of e is simply OK.
  N is involved in recursive computations, e.g.
  OK(fun x -> {p} e {q}) = forall x. p => OK(e) /\ (forall result. N(e) => q)
  And so on.

  In practice, this is a bit more involved, since execution of e may raise
  exceptions. So formula N comes with other formulas E(x), once for each
  exception x that is possibly raised by e. E(x) is the input-output relation
  that holds when exception x is raised.
*)

let fast_wp = Debug.register_flag "fast_wp"
  ~desc:"Efficient Weakest Preconditions."

module Subst = struct

979
(* dead code
980
  type t = unit
981
*)
982 983 984 985 986

  let empty = ()

  let term _s t = t

987
(* dead code
988
  let frame _ef s = s
989
*)
990 991 992 993 994 995 996 997