verifythis_2018_le_rouge_et_le_noir_1.mlw 12.4 KB
Newer Older
1 2 3 4 5 6 7 8
(**

{1 VerifyThis @ ETAPS 2018 competition
   Challenge 2: Le rouge et le noir}

Author: Raphaël Rieu-Helft (LRI, Université Paris Sud)
*)

9 10
module ColoredTiles

11 12 13
use int.Int
use set.Fset
use seq.Seq
14 15 16 17 18 19 20 21 22 23 24 25 26

type color = Red | Black

type coloring = seq color

predicate tworedneighbors (c: coloring) (i:int)
  = ((c[i-2] = Red /\ c[i-1] = Red /\ 2 <= i)
     \/ (c[i-1] = Red /\ c[i+1] = Red /\ 1 <= i <= length c - 2)
     \/ (c[i+1] = Red /\ c[i+2] = Red /\ i <= length c - 3))

predicate valid (c:coloring) =
  forall i. 0 <= i < length c -> c[i] = Red -> tworedneighbors c i

27 28
function black (_n:int) : color = Black
function red (_n:int) : color = Red
29

30 31 32 33
function colorings0 : fset coloring = add (create 0 black) Fset.empty
function colorings1 : fset coloring = add (create 1 black) Fset.empty
function colorings2 : fset coloring = add (create 2 black) Fset.empty
function colorings3: fset coloring =
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
         add (create 3 red) (add (create 3 black) Fset.empty)

lemma valid_contr:
  forall c i. valid c -> 0 <= i < length c -> not (tworedneighbors c i) -> c[i] = Black

lemma colo_0 : forall c: coloring. length c = 0 ->
      (valid c <-> mem c colorings0 by Seq.(==) c (create 0 black))

lemma colo_1 : forall c: coloring. length c = 1 ->
      (valid c <-> mem c colorings1
                   by c[0] = Black
                   so Seq.(==) c (create 1 black))

lemma colo_2 : forall c: coloring. length c = 2 ->
      (valid c <-> mem c colorings2
                   by c[0] = Black = c[1]
                   so Seq.(==) c (create 2 black)
                   so c = create 2 black)

lemma colo_3 : forall c: coloring. length c = 3 ->
      (valid c <-> mem c colorings3
                   by if c[0] = Black
                      then (c[0]=c[1]=c[2]=Black
                            so c == create 3 black
                            so c = create 3 black)
                      else (c[0]=c[1]=c[2]=Red
                            so c == create 3 red
                            so c = create 3 red))

let lemma valid_split_fb (c:coloring) (k: int)
  requires { 3 <= k < length c }
  requires { forall i. 0 <= i < k -> c[i] = Red }
  requires { valid c[k+1 ..] }
  ensures  { valid c }
= let c' = c[k+1 ..] in
  assert { forall i. k+1 <= i < length c -> c[i] = Red ->
             (tworedneighbors c i
              by c'[i - (k+1)] = Red
              so [@case_split] tworedneighbors c' (i - (k+1))) }

let lemma valid_restrict (c: coloring) (k: int)
  requires { valid c }
  requires { 0 <= k < length c }
  requires { c[k] = Black }
  ensures  { valid c[k+1 ..] }
= ()

(*1st black tile starting at i *)
let rec function first_black_tile (c:coloring) : int
  ensures { 0 <= result <= length c }
  ensures { forall j. 0 <= j < result <= length c
            -> c[j] = Red }
  ensures { result < length c -> c[result] = Black }
  ensures { valid c -> result = 0 \/ 3 <= result }
  variant { length c }
= if Seq.length c = 0 then 0
  else match c[0] with
       | Black -> 0
       | Red ->
           assert { valid c -> c[1]=Red /\ c[2] = Red };
           let r = first_black_tile c[1 ..] in
           assert { forall j. 1 <= j < 1+r
                    -> c[j] = Red
                       by c[1 ..][j-1] = Red };
           1+r end

let rec function addleft (nr:int) (c:coloring) : coloring
  variant { nr }
  ensures { nr >= 0 -> Seq.length result = Seq.length c + nr + 1 }
= if nr <= 0 then cons Black c
  else cons Red (addleft (nr-1) c)

(* add nr red tiles and a black tile to the left of each coloring *)
107
function mapaddleft (s:fset coloring) (nr:int) : fset coloring
108 109 110 111 112 113 114 115 116 117 118
=  map (addleft nr) s

lemma addleft_fb:
  forall c nr. 0 <= nr -> first_black_tile (addleft nr c) = nr

lemma mapaddleft_fb:
  forall s c nr. 0 <= nr -> mem c (mapaddleft s nr) -> first_black_tile c = nr

predicate reciprocal (f: 'a -> 'b) (g: 'b -> 'a)
  = forall y. g (f y) = y

119
let lemma bij_image (u: fset 'a) (f: 'a -> 'b) (g: 'b -> 'a)
120 121 122 123 124 125
  requires { reciprocal f g }
  ensures  { subset u (map g (map f u)) }
= assert { forall x. mem x u -> mem (f x) (map f u)
                     -> mem (g (f x)) (map g (map f u))
                     -> mem x (map g (map f u)) }

126
let lemma bij_cardinal (u: fset 'a) (f: 'a -> 'b) (g: 'b -> 'a)
127 128 129 130 131 132 133 134
  requires { reciprocal f g }
  ensures  { cardinal (map f u) = cardinal u }
= assert { cardinal (map f u) <= cardinal u };
  assert { cardinal (map g (map f u)) <= cardinal (map f u) };
  assert { cardinal u <= cardinal (map g (map f u)) }

function rmleft (nr:int) (c:coloring) : coloring = c[nr+1 ..]

135
use seq.FreeMonoid
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

lemma ext: forall c1 c2: coloring. Seq.(==) c1 c2 -> c1 = c2
lemma app_eq: forall c1 c2 c3 c4: coloring. c1 = c2 -> c3 = c4 -> c1 ++ c3 = c2 ++ c4

let rec lemma addleft_result (c:coloring) (nr:int)
  requires { 0 <= nr }
  ensures  { addleft nr c = (Seq.create nr red) ++ (cons Black c) }
  variant  { nr }
= if nr = 0 then assert { addleft nr c = (Seq.create nr red) ++ (cons Black c) }
  else begin
    let cnr = create nr red in
    let cnrm = create (nr - 1) red in
    addleft_result c (nr-1);
    assert { addleft (nr-1) c = cnrm ++ cons Black c };
    assert { cons Red cnrm = cnr
               by Seq.(==) (cons Red cnrm) cnr };
    assert { addleft nr c = cnr ++ cons Black c
             by addleft nr c
                = cons Red (addleft (nr-1) c)
                = cons Red (cnrm ++ cons Black c)
                = (cons Red cnrm) ++ cons Black c
                = cnr ++ cons Black c }
  end

let lemma addleft_bijective (nr:int)
  requires { 0 <= nr }
  ensures  { reciprocal (addleft nr) (rmleft nr) }
= assert { forall c i. 0 <= i < length c -> (rmleft nr (addleft nr c))[i] = c[i] };
  assert { forall c. Seq.(==) (rmleft nr (addleft nr c)) c }

166
let lemma mapaddleft_card (s: fset coloring) (nr: int)
167 168 169 170 171 172 173 174 175 176 177 178 179
  requires { 0 <= nr }
  ensures  { cardinal (mapaddleft s nr) = cardinal s }
= addleft_bijective nr;
  bij_cardinal s (addleft nr) (rmleft nr)

let lemma addleft_valid (c:coloring) (nr:int)
  requires { nr = 0 \/ 3 <= nr }
  requires { valid c }
  ensures  { valid (addleft nr c) }
= addleft_result c nr;
  if nr = 0 then assert { valid (addleft 0 c) }
  else valid_split_fb (addleft nr c) nr

180
let lemma mapaddleft_valid (s: fset coloring) (nr: int)
181 182 183 184 185 186 187 188
  requires { forall c. mem c s -> valid c }
  requires { nr = 0 \/ 3 <= nr }
  ensures  { forall c. mem c (mapaddleft s nr) -> valid c }
= assert { forall c. mem c (mapaddleft s nr) ->
                     valid c
                     by mem c (map (addleft nr) s)
                     so (exists y. mem y s /\ c = addleft nr y) }

189
let lemma mapaddleft_length (s: fset coloring) (nr: int) (l1 l2: int)
190 191 192 193 194 195
  requires { forall c. mem c s -> Seq.length c = l1 }
  requires { 0 <= nr }
  requires { l2 = l1 + nr + 1 }
  ensures  { forall c. mem c (mapaddleft s nr) -> Seq.length c = l2 }
= ()

196
let rec ghost disjoint_union (s1 s2: fset coloring) : fset coloring
197 198 199 200 201 202 203 204 205 206 207 208 209
  requires { forall x. mem x s1 -> not mem x s2 }
  ensures  { result = union s1 s2 }
  ensures  { cardinal result = cardinal s1 + cardinal s2 }
  variant  { cardinal s1 }
= if is_empty s1
  then begin
    assert { union s1 s2 = s2
             by (forall x. mem x (union s1 s2)
                -> mem x s1 \/ mem x s2 -> mem x s2)
             so subset (union s1 s2) s2 };
    s2
  end
  else
210
    let x = pick s1 in
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    let s1' = remove x s1 in
    let s2' = add x s2 in
    let u = disjoint_union s1' s2' in
    assert { u = union s1 s2
             by u = union s1' s2'
             so (forall y. (mem y s2' <-> (mem y s2 \/ y = x)))
             so (forall y. ((mem y s1' \/ y = x) <-> mem y s1))
             so (forall y. mem y u <-> mem y s1' \/ mem y s2'
                       <-> mem y s1' \/ mem y s2 \/ y = x
                       <-> mem y s1 \/ mem y s2
                       <-> mem y (union s1 s2))
             so (forall y. mem y u <-> mem y (union s1 s2))
             so Fset.(==) u (union s1 s2)};
    u

226
use array.Array
227

228
let enum () : (count: array int, ghost sets: array (fset coloring))
229
  ensures { Array.length count = 51 = Array.length sets
230 231 232 233 234 235
            /\ (forall i. 0 <= i <= 50 ->
               (forall c: coloring. Seq.length c = i ->
                          (valid c <-> mem c (sets[i]))))
            /\ (forall i. 0 <= i < 50 ->
                          count[i] = cardinal (sets[i])) }
= let count = Array.make 51 0 in
236
  let ghost sets : array (fset coloring) = Array.make 51 Fset.empty in
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
  count[0] <- 1;
  sets[0] <- colorings0;
  assert { forall c. ((Seq.length c = 0 /\ valid c) <-> mem c (sets[0])) };
  count[1] <- 1;
  sets[1] <- colorings1;
  assert { forall i c. (i=0 \/ i=1)
           -> ((Seq.length c = i /\ valid c) <-> mem c (sets[i])) };
  count[2] <- 1;
  sets[2] <- colorings2;
  assert { forall i c. (i=0 \/ i=1 \/ i=2)
           -> ((Seq.length c = i /\ valid c) <-> mem c (sets[i])) };
  count[3] <- 2;
  sets[3] <- colorings3;
  assert { sets[3] = colorings3 };
  assert { forall i c. (i=0 \/ i=1 \/ i=2 \/ i = 3)
           -> ((Seq.length c = i /\ valid c) <-> mem c (sets[i])) };
  assert { cardinal colorings3 = 2 };
  for n = 4 to 50 do
    invariant { forall c i. 0 <= i < n -> Seq.length c = i ->
                         valid c -> mem c (sets[i]) }
    invariant { forall c i. 0 <= i < n -> mem c (sets[i]) ->
                         (Seq.length c = i /\ valid c) }
    invariant { forall i. 0 <= i < n ->
                         count[i] = cardinal (sets[i]) }
    label StartLoop in
    (* colorings with first_black_tile = 0 *)
    count[n] <- count[n-1];
    mapaddleft_valid (sets[n-1]) 0;
    sets[n] <- mapaddleft (sets[n-1]) 0;
    assert { forall i. 0 <= i < n -> sets[i] = sets[i] at StartLoop };
    assert { forall i. 0 <= i < n -> count[i] = count[i] at StartLoop };
    assert { forall c. Seq.length c = n -> valid c -> first_black_tile c < 3 ->
                       mem c sets[n]
                       by first_black_tile c = 0
                       so valid c[1 ..]
                       so mem c[1 ..] (sets[n-1])
                       so addleft 0 c[1 ..] = c
                       so mem c (mapaddleft sets[n-1] 0) };
    for k = 3 to n-1 do
      invariant { forall c i. 0 <= i < n -> Seq.length c = i ->
                           valid c -> mem c (sets[i]) }
      invariant { forall c i. 0 <= i < n -> mem c (sets[i]) ->
                             (Seq.length c = i /\ valid c) }
      invariant { forall i. 0 <= i < n ->
                            count[i] = cardinal (sets[i]) }
      invariant { forall c. (mem c (sets[n]) <->
                            (Seq.length c = n /\ valid c
                            /\ first_black_tile c < k)) }
      invariant { count[n] = cardinal (sets[n]) }
      label InnerLoop in
      (* colorings with first_black_tile = k *)
      count[n] <- count [n] + count [n-k-1];
      mapaddleft_length (sets[n-k-1]) k (n-k-1) n;
      mapaddleft_valid  (sets[n-k-1]) k;
      mapaddleft_card   (sets[n-k-1]) k;
      let ghost ns = mapaddleft sets[n-k-1] k in
      assert { forall c. mem c ns -> first_black_tile c = k };
      assert { forall c. Seq.length c = n -> valid c -> first_black_tile c = k
                         -> mem c ns
                         by valid c[k+1 ..]
                         so mem c[k+1 ..] (sets[n-k-1])
                         so let c' = addleft k c[k+1 ..] in
                            ((forall i. 0 <= i < n -> Seq.get c i = Seq.get c' i)
                             by c[k+1 ..] = c'[k+1 ..])
                         so Seq.(==) c' c
                         so c' = c
                         so mem c (mapaddleft sets[n-k-1] k) };
      sets[n] <- disjoint_union (sets[n]) ns;
      assert { forall i. 0 <= i < n -> sets[i] = sets[i] at InnerLoop };
      assert { forall i. 0 <= i < n -> count[i] = count[i] at InnerLoop };
    done;
    (* coloring with first_black_tile = n *)
    label LastAdd in
    let ghost r = Seq.create n red in
    let ghost sr = Fset.singleton r in
    assert { forall c. mem c sets[n] -> first_black_tile c < n };
    assert { first_black_tile r = n };
    assert { valid r /\ Seq.length r = n };
    count[n] <- count[n]+1;
    sets[n] <- disjoint_union (sets[n]) sr;
    assert { forall c. mem c sets[n] -> valid c /\ Seq.length c = n
                       by [@case_split] mem c (sets[n] at LastAdd) \/ mem c sr };
    assert { forall c. Seq.length c = n -> first_black_tile c = n ->
                       mem c sets[n]
                       by (forall k. 0 <= k < n -> Seq.get c k = Red)
                       so c == r so c = r };
    assert { forall i. 0 <= i < n -> sets[i] = sets[i] at LastAdd };
    assert { forall i. 0 <= i < n -> count[i] = count[i] at LastAdd };
  done;
  count, sets

328
end