blocking_semantics5_FreshVariables_eval_swap_2.v 14.3 KB
Newer Older
Asma Tafat's avatar
Asma Tafat committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
(* This file is generated by Why3's Coq driver *)
(* Beware! Only edit allowed sections below    *)
Require Import BuiltIn.
Require BuiltIn.
Require int.Int.

(* Why3 assumption *)
Inductive datatype  :=
  | TYunit : datatype 
  | TYint : datatype 
  | TYbool : datatype .
Axiom datatype_WhyType : WhyType datatype.
Existing Instance datatype_WhyType.

(* Why3 assumption *)
Inductive value  :=
  | Vvoid : value 
  | Vint : Z -> value 
  | Vbool : bool -> value .
Axiom value_WhyType : WhyType value.
Existing Instance value_WhyType.

(* Why3 assumption *)
Inductive operator  :=
  | Oplus : operator 
  | Ominus : operator 
  | Omult : operator 
  | Ole : operator .
Axiom operator_WhyType : WhyType operator.
Existing Instance operator_WhyType.

Axiom mident : Type.
Parameter mident_WhyType : WhyType mident.
Existing Instance mident_WhyType.

Axiom mident_decide : forall (m1:mident) (m2:mident), (m1 = m2) \/
  ~ (m1 = m2).

Axiom ident : Type.
Parameter ident_WhyType : WhyType ident.
Existing Instance ident_WhyType.

Axiom ident_decide : forall (m1:ident) (m2:ident), (m1 = m2) \/ ~ (m1 = m2).

(* Why3 assumption *)
Inductive term  :=
  | Tvalue : value -> term 
  | Tvar : ident -> term 
  | Tderef : mident -> term 
  | Tbin : term -> operator -> term -> term .
Axiom term_WhyType : WhyType term.
Existing Instance term_WhyType.

(* Why3 assumption *)
Inductive fmla  :=
  | Fterm : term -> fmla 
  | Fand : fmla -> fmla -> fmla 
  | Fnot : fmla -> fmla 
  | Fimplies : fmla -> fmla -> fmla 
  | Flet : ident -> term -> fmla -> fmla 
  | Fforall : ident -> datatype -> fmla -> fmla .
Axiom fmla_WhyType : WhyType fmla.
Existing Instance fmla_WhyType.

(* Why3 assumption *)
Inductive stmt  :=
  | Sskip : stmt 
  | Sassign : mident -> term -> stmt 
  | Sseq : stmt -> stmt -> stmt 
  | Sif : term -> stmt -> stmt -> stmt 
  | Sassert : fmla -> stmt 
  | Swhile : term -> fmla -> stmt -> stmt .
Axiom stmt_WhyType : WhyType stmt.
Existing Instance stmt_WhyType.

Axiom decide_is_skip : forall (s:stmt), (s = Sskip) \/ ~ (s = Sskip).

Axiom map : forall (a:Type) {a_WT:WhyType a} (b:Type) {b_WT:WhyType b}, Type.
Parameter map_WhyType : forall (a:Type) {a_WT:WhyType a}
  (b:Type) {b_WT:WhyType b}, WhyType (map a b).
Existing Instance map_WhyType.

Parameter get: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  (map a b) -> a -> b.

Parameter set: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  (map a b) -> a -> b -> (map a b).

Axiom Select_eq : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  forall (m:(map a b)), forall (a1:a) (a2:a), forall (b1:b), (a1 = a2) ->
  ((get (set m a1 b1) a2) = b1).

Axiom Select_neq : forall {a:Type} {a_WT:WhyType a}
  {b:Type} {b_WT:WhyType b}, forall (m:(map a b)), forall (a1:a) (a2:a),
  forall (b1:b), (~ (a1 = a2)) -> ((get (set m a1 b1) a2) = (get m a2)).

Parameter const: forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  b -> (map a b).

Axiom Const : forall {a:Type} {a_WT:WhyType a} {b:Type} {b_WT:WhyType b},
  forall (b1:b) (a1:a), ((get (const b1:(map a b)) a1) = b1).

(* Why3 assumption *)
Inductive list (a:Type) {a_WT:WhyType a} :=
  | Nil : list a
  | Cons : a -> (list a) -> list a.
Axiom list_WhyType : forall (a:Type) {a_WT:WhyType a}, WhyType (list a).
Existing Instance list_WhyType.
Implicit Arguments Nil [[a] [a_WT]].
Implicit Arguments Cons [[a] [a_WT]].

(* Why3 assumption *)
Definition env  := (map mident value).

(* Why3 assumption *)
Definition stack  := (list (ident* value)%type).

Parameter get_stack: ident -> (list (ident* value)%type) -> value.

Axiom get_stack_def : forall (i:ident) (pi:(list (ident* value)%type)),
  match pi with
  | Nil => ((get_stack i pi) = Vvoid)
  | (Cons (x, v) r) => ((x = i) -> ((get_stack i pi) = v)) /\ ((~ (x = i)) ->
      ((get_stack i pi) = (get_stack i r)))
  end.

Axiom get_stack_eq : forall (x:ident) (v:value) (r:(list (ident*
  value)%type)), ((get_stack x (Cons (x, v) r)) = v).

Axiom get_stack_neq : forall (x:ident) (i:ident) (v:value) (r:(list (ident*
  value)%type)), (~ (x = i)) -> ((get_stack i (Cons (x, v) r)) = (get_stack i
  r)).

Parameter eval_bin: value -> operator -> value -> value.

Axiom eval_bin_def : forall (x:value) (op:operator) (y:value), match (x,
  y) with
  | ((Vint x1), (Vint y1)) =>
      match op with
      | Oplus => ((eval_bin x op y) = (Vint (x1 + y1)%Z))
      | Ominus => ((eval_bin x op y) = (Vint (x1 - y1)%Z))
      | Omult => ((eval_bin x op y) = (Vint (x1 * y1)%Z))
      | Ole => ((x1 <= y1)%Z -> ((eval_bin x op y) = (Vbool true))) /\
          ((~ (x1 <= y1)%Z) -> ((eval_bin x op y) = (Vbool false)))
      end
  | (_, _) => ((eval_bin x op y) = Vvoid)
  end.

(* Why3 assumption *)
Fixpoint eval_term(sigma:(map mident value)) (pi:(list (ident* value)%type))
  (t:term) {struct t}: value :=
  match t with
  | (Tvalue v) => v
  | (Tvar id) => (get_stack id pi)
  | (Tderef id) => (get sigma id)
  | (Tbin t1 op t2) => (eval_bin (eval_term sigma pi t1) op (eval_term sigma
      pi t2))
  end.

(* Why3 assumption *)
Fixpoint eval_fmla(sigma:(map mident value)) (pi:(list (ident* value)%type))
  (f:fmla) {struct f}: Prop :=
  match f with
  | (Fterm t) => ((eval_term sigma pi t) = (Vbool true))
  | (Fand f1 f2) => (eval_fmla sigma pi f1) /\ (eval_fmla sigma pi f2)
  | (Fnot f1) => ~ (eval_fmla sigma pi f1)
  | (Fimplies f1 f2) => (eval_fmla sigma pi f1) -> (eval_fmla sigma pi f2)
  | (Flet x t f1) => (eval_fmla sigma (Cons (x, (eval_term sigma pi t)) pi)
      f1)
  | (Fforall x TYint f1) => forall (n:Z), (eval_fmla sigma (Cons (x,
      (Vint n)) pi) f1)
  | (Fforall x TYbool f1) => forall (b:bool), (eval_fmla sigma (Cons (x,
      (Vbool b)) pi) f1)
  | (Fforall x TYunit f1) => (eval_fmla sigma (Cons (x, Vvoid) pi) f1)
  end.

(* Why3 assumption *)
Definition valid_fmla(p:fmla): Prop := forall (sigma:(map mident value))
  (pi:(list (ident* value)%type)), (eval_fmla sigma pi p).

(* Why3 assumption *)
Inductive one_step : (map mident value) -> (list (ident* value)%type) -> stmt
  -> (map mident value) -> (list (ident* value)%type) -> stmt -> Prop :=
  | one_step_assign : forall (sigma:(map mident value)) (sigma':(map mident
      value)) (pi:(list (ident* value)%type)) (x:mident) (t:term),
      (sigma' = (set sigma x (eval_term sigma pi t))) -> (one_step sigma pi
      (Sassign x t) sigma' pi Sskip)
  | one_step_seq_noskip : forall (sigma:(map mident value)) (sigma':(map
      mident value)) (pi:(list (ident* value)%type)) (pi':(list (ident*
      value)%type)) (s1:stmt) (s1':stmt) (s2:stmt), (one_step sigma pi s1
      sigma' pi' s1') -> (one_step sigma pi (Sseq s1 s2) sigma' pi' (Sseq s1'
      s2))
  | one_step_seq_skip : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (s:stmt), (one_step sigma pi (Sseq Sskip s) sigma pi s)
  | one_step_if_true : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (t:term) (s1:stmt) (s2:stmt), ((eval_term sigma pi
      t) = (Vbool true)) -> (one_step sigma pi (Sif t s1 s2) sigma pi s1)
  | one_step_if_false : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (t:term) (s1:stmt) (s2:stmt), ((eval_term sigma pi
      t) = (Vbool false)) -> (one_step sigma pi (Sif t s1 s2) sigma pi s2)
  | one_step_assert : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (f:fmla), (eval_fmla sigma pi f) -> (one_step sigma pi
      (Sassert f) sigma pi Sskip)
  | one_step_while_true : forall (sigma:(map mident value)) (pi:(list (ident*
205
206
207
      value)%type)) (cond:term) (inv:fmla) (body:stmt), ((eval_fmla sigma pi
      inv) /\ ((eval_term sigma pi cond) = (Vbool true))) -> (one_step sigma
      pi (Swhile cond inv body) sigma pi (Sseq body (Swhile cond inv body)))
Asma Tafat's avatar
Asma Tafat committed
208
209
  | one_step_while_false : forall (sigma:(map mident value)) (pi:(list
      (ident* value)%type)) (cond:term) (inv:fmla) (body:stmt),
210
211
212
      ((eval_fmla sigma pi inv) /\ ((eval_term sigma pi
      cond) = (Vbool false))) -> (one_step sigma pi (Swhile cond inv body)
      sigma pi Sskip).
Asma Tafat's avatar
Asma Tafat committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

(* Why3 assumption *)
Inductive many_steps : (map mident value) -> (list (ident* value)%type)
  -> stmt -> (map mident value) -> (list (ident* value)%type) -> stmt
  -> Z -> Prop :=
  | many_steps_refl : forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (s:stmt), (many_steps sigma pi s sigma pi s 0%Z)
  | many_steps_trans : forall (sigma1:(map mident value)) (sigma2:(map mident
      value)) (sigma3:(map mident value)) (pi1:(list (ident* value)%type))
      (pi2:(list (ident* value)%type)) (pi3:(list (ident* value)%type))
      (s1:stmt) (s2:stmt) (s3:stmt) (n:Z), (one_step sigma1 pi1 s1 sigma2 pi2
      s2) -> ((many_steps sigma2 pi2 s2 sigma3 pi3 s3 n) ->
      (many_steps sigma1 pi1 s1 sigma3 pi3 s3 (n + 1%Z)%Z)).

Axiom steps_non_neg : forall (sigma1:(map mident value)) (sigma2:(map mident
  value)) (pi1:(list (ident* value)%type)) (pi2:(list (ident* value)%type))
  (s1:stmt) (s2:stmt) (n:Z), (many_steps sigma1 pi1 s1 sigma2 pi2 s2 n) ->
  (0%Z <= n)%Z.

(* Why3 assumption *)
233
Definition reductible(sigma:(map mident value)) (pi:(list (ident*
Asma Tafat's avatar
Asma Tafat committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
  value)%type)) (s:stmt): Prop := exists sigma':(map mident value),
  exists pi':(list (ident* value)%type), exists s':stmt, (one_step sigma pi s
  sigma' pi' s').

(* Why3 assumption *)
Fixpoint infix_plpl {a:Type} {a_WT:WhyType a}(l1:(list a)) (l2:(list
  a)) {struct l1}: (list a) :=
  match l1 with
  | Nil => l2
  | (Cons x1 r1) => (Cons x1 (infix_plpl r1 l2))
  end.

Axiom Append_assoc : forall {a:Type} {a_WT:WhyType a}, forall (l1:(list a))
  (l2:(list a)) (l3:(list a)), ((infix_plpl l1 (infix_plpl l2
  l3)) = (infix_plpl (infix_plpl l1 l2) l3)).

Axiom Append_l_nil : forall {a:Type} {a_WT:WhyType a}, forall (l:(list a)),
  ((infix_plpl l (Nil :(list a))) = l).

(* Why3 assumption *)
Fixpoint length {a:Type} {a_WT:WhyType a}(l:(list a)) {struct l}: Z :=
  match l with
  | Nil => 0%Z
  | (Cons _ r) => (1%Z + (length r))%Z
  end.

Axiom Length_nonnegative : forall {a:Type} {a_WT:WhyType a}, forall (l:(list
  a)), (0%Z <= (length l))%Z.

Axiom Length_nil : forall {a:Type} {a_WT:WhyType a}, forall (l:(list a)),
  ((length l) = 0%Z) <-> (l = (Nil :(list a))).

Axiom Append_length : forall {a:Type} {a_WT:WhyType a}, forall (l1:(list a))
  (l2:(list a)), ((length (infix_plpl l1
  l2)) = ((length l1) + (length l2))%Z).

(* Why3 assumption *)
Fixpoint mem {a:Type} {a_WT:WhyType a}(x:a) (l:(list a)) {struct l}: Prop :=
  match l with
  | Nil => False
  | (Cons y r) => (x = y) \/ (mem x r)
  end.

Axiom mem_append : forall {a:Type} {a_WT:WhyType a}, forall (x:a) (l1:(list
  a)) (l2:(list a)), (mem x (infix_plpl l1 l2)) <-> ((mem x l1) \/ (mem x
  l2)).

Axiom mem_decomp : forall {a:Type} {a_WT:WhyType a}, forall (x:a) (l:(list
  a)), (mem x l) -> exists l1:(list a), exists l2:(list a),
  (l = (infix_plpl l1 (Cons x l2))).

285
286
287
288
Axiom Cons_append : forall {a:Type} {a_WT:WhyType a}, forall (a1:a) (l1:(list
  a)) (l2:(list a)), ((Cons a1 (infix_plpl l1 l2)) = (infix_plpl (Cons a1 l1)
  l2)).

MARCHE Claude's avatar
MARCHE Claude committed
289
290
Axiom Append_nil_l : forall {a:Type} {a_WT:WhyType a}, forall (l:(list a)),
  ((infix_plpl (Nil :(list a)) l) = l).
291

292
293
294
295
296
297
298
299
300
301
302
Parameter msubst_term: term -> mident -> ident -> term.

Axiom msubst_term_def : forall (t:term) (x:mident) (v:ident),
  match t with
  | ((Tvalue _)|(Tvar _)) => ((msubst_term t x v) = t)
  | (Tderef y) => ((x = y) -> ((msubst_term t x v) = (Tvar v))) /\
      ((~ (x = y)) -> ((msubst_term t x v) = t))
  | (Tbin t1 op t2) => ((msubst_term t x v) = (Tbin (msubst_term t1 x v) op
      (msubst_term t2 x v)))
  end.

Asma Tafat's avatar
Asma Tafat committed
303
(* Why3 assumption *)
304
305
306
307
308
309
310
311
312
313
314
315
Fixpoint msubst(f:fmla) (x:mident) (v:ident) {struct f}: fmla :=
  match f with
  | (Fterm e) => (Fterm (msubst_term e x v))
  | (Fand f1 f2) => (Fand (msubst f1 x v) (msubst f2 x v))
  | (Fnot f1) => (Fnot (msubst f1 x v))
  | (Fimplies f1 f2) => (Fimplies (msubst f1 x v) (msubst f2 x v))
  | (Flet y t f1) => (Flet y (msubst_term t x v) (msubst f1 x v))
  | (Fforall y ty f1) => (Fforall y ty (msubst f1 x v))
  end.

(* Why3 assumption *)
Fixpoint fresh_in_term(id:ident) (t:term) {struct t}: Prop :=
Asma Tafat's avatar
Asma Tafat committed
316
317
  match t with
  | (Tvalue _) => True
318
  | (Tvar i) => ~ (id = i)
Asma Tafat's avatar
Asma Tafat committed
319
  | (Tderef _) => True
320
  | (Tbin t1 _ t2) => (fresh_in_term id t1) /\ (fresh_in_term id t2)
Asma Tafat's avatar
Asma Tafat committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
  end.

(* Why3 assumption *)
Fixpoint fresh_in_fmla(id:ident) (f:fmla) {struct f}: Prop :=
  match f with
  | (Fterm e) => (fresh_in_term id e)
  | ((Fand f1 f2)|(Fimplies f1 f2)) => (fresh_in_fmla id f1) /\
      (fresh_in_fmla id f2)
  | (Fnot f1) => (fresh_in_fmla id f1)
  | (Flet y t f1) => (~ (id = y)) /\ ((fresh_in_term id t) /\
      (fresh_in_fmla id f1))
  | (Fforall y ty f1) => (~ (id = y)) /\ (fresh_in_fmla id f1)
  end.

Axiom eval_msubst_term : forall (e:term) (sigma:(map mident value)) (pi:(list
  (ident* value)%type)) (x:mident) (v:ident), (fresh_in_term v e) ->
  ((eval_term sigma pi (msubst_term e x v)) = (eval_term (set sigma x
  (get_stack v pi)) pi e)).

Axiom eval_msubst : forall (f:fmla) (sigma:(map mident value)) (pi:(list
  (ident* value)%type)) (x:mident) (v:ident), (fresh_in_fmla v f) ->
  ((eval_fmla sigma pi (msubst f x v)) <-> (eval_fmla (set sigma x
  (get_stack v pi)) pi f)).

Axiom eval_swap_term : forall (t:term) (sigma:(map mident value)) (pi:(list
  (ident* value)%type)) (l:(list (ident* value)%type)) (id1:ident)
  (id2:ident) (v1:value) (v2:value), (~ (id1 = id2)) -> ((eval_term sigma
  (infix_plpl l (Cons (id1, v1) (Cons (id2, v2) pi))) t) = (eval_term sigma
  (infix_plpl l (Cons (id2, v2) (Cons (id1, v1) pi))) t)).

Require Import Why3.

Ltac ae := why3 "alt-ergo" timelimit 3.

(* Why3 goal *)
Theorem eval_swap : forall (f:fmla),
  match f with
  | (Fterm t) => True
  | (Fand f1 f2) => True
  | (Fnot f1) => True
  | (Fimplies f1 f2) => True
  | (Flet i t f1) => True
  | (Fforall i d f1) => (forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (l:(list (ident* value)%type)) (id1:ident) (id2:ident)
      (v1:value) (v2:value), (~ (id1 = id2)) -> ((eval_fmla sigma
      (infix_plpl l (Cons (id1, v1) (Cons (id2, v2) pi))) f1) <->
      (eval_fmla sigma (infix_plpl l (Cons (id2, v2) (Cons (id1, v1) pi)))
      f1))) -> forall (sigma:(map mident value)) (pi:(list (ident*
      value)%type)) (l:(list (ident* value)%type)) (id1:ident) (id2:ident)
      (v1:value) (v2:value), (~ (id1 = id2)) -> ((eval_fmla sigma
      (infix_plpl l (Cons (id2, v2) (Cons (id1, v1) pi))) f) ->
      (eval_fmla sigma (infix_plpl l (Cons (id1, v1) (Cons (id2, v2) pi)))
      f))
  end.
destruct f; auto.
MARCHE Claude's avatar
MARCHE Claude committed
376
377
simpl; intros.
destruct d; intros; rewrite Cons_append; ae.
Asma Tafat's avatar
Asma Tafat committed
378
379
380
Qed.