mlw_wp.ml 75.4 KB
Newer Older
Andrei Paskevich's avatar
Andrei Paskevich committed
1 2 3
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
4
(*  Copyright 2010-2013   --   INRIA - CNRS - Paris-Sud University  *)
Andrei Paskevich's avatar
Andrei Paskevich committed
5 6 7 8 9 10
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
(*                                                                  *)
(********************************************************************)
Andrei Paskevich's avatar
Andrei Paskevich committed
11

12
open Stdlib
Andrei Paskevich's avatar
Andrei Paskevich committed
13 14 15
open Ident
open Ty
open Term
16
open Decl
Andrei Paskevich's avatar
Andrei Paskevich committed
17 18 19 20 21
open Theory
open Mlw_ty
open Mlw_ty.T
open Mlw_expr

22
let debug = Debug.register_info_flag "whyml_wp"
Andrei Paskevich's avatar
Andrei Paskevich committed
23
  ~desc:"Print@ details@ of@ verification@ conditions@ generation."
24

25
let no_track = Debug.register_flag "wp_no_track"
Andrei Paskevich's avatar
Andrei Paskevich committed
26 27
  ~desc:"Do@ not@ remove@ redundant@ type@ invariant@ conditions@ from@ VCs."

28
let no_eval = Debug.register_flag "wp_no_eval"
Andrei Paskevich's avatar
Andrei Paskevich committed
29
  ~desc:"Do@ not@ simplify@ pattern@ matching@ on@ record@ datatypes@ in@ VCs."
30

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
31 32
let lemma_label = Ident.create_label "why3:lemma"

33
(** Marks *)
Andrei Paskevich's avatar
Andrei Paskevich committed
34 35 36 37

let ts_mark = create_tysymbol (id_fresh "'mark") [] None
let ty_mark = ty_app ts_mark []

38
let ity_mark = ity_pur ts_mark []
39 40

let fresh_mark () = create_vsymbol (id_fresh "'mark") ty_mark
41

Andrei Paskevich's avatar
Andrei Paskevich committed
42 43 44 45 46 47 48 49
let fs_at =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "at") [ty; ty_mark] (Some ty)

let fs_old =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "old") [ty] (Some ty)

50 51
let th_mark_at =
  let uc = create_theory (id_fresh "WP builtins: at") in
Andrei Paskevich's avatar
Andrei Paskevich committed
52 53
  let uc = add_ty_decl uc ts_mark in
  let uc = add_param_decl uc fs_at in
54 55 56 57 58
  close_theory uc

let th_mark_old =
  let uc = create_theory (id_fresh "WP builtins: old") in
  let uc = use_export uc th_mark_at in
Andrei Paskevich's avatar
Andrei Paskevich committed
59 60 61
  let uc = add_param_decl uc fs_old in
  close_theory uc

62
let fs_now = create_lsymbol (id_fresh "%now") [] (Some ty_mark)
Andrei Paskevich's avatar
Andrei Paskevich committed
63 64
let t_now = fs_app fs_now [] ty_mark
let e_now = e_lapp fs_now [] (ity_pur ts_mark [])
Andrei Paskevich's avatar
Andrei Paskevich committed
65

66 67
(* [vs_old] appears in the postconditions given to the core API,
   which expects every vsymbol to be a pure part of a pvsymbol *)
68
let pv_old = create_pvsymbol (id_fresh "%old") ity_mark
69 70
let vs_old = pv_old.pv_vs
let t_old  = t_var vs_old
71

Andrei Paskevich's avatar
Andrei Paskevich committed
72 73
let t_at_old t = t_app fs_at [t; t_old] t.t_ty

74 75
let ls_absurd = create_lsymbol (id_fresh "absurd") [] None
let t_absurd  = ps_app ls_absurd []
76

77
let mk_t_if f = t_if f t_bool_true t_bool_false
78
let to_term t = if t.t_ty = None then mk_t_if t else t
79

80
(* any vs in post/xpost is either a pvsymbol or a fresh mark *)
81
let ity_of_vs vs =
82
  if Ty.ty_equal vs.vs_ty ty_mark then ity_mark else (restore_pv vs).pv_ity
83 84 85

(* replace every occurrence of [old(t)] with [at(t,'old)] *)
let rec remove_old f = match f.t_node with
Andrei Paskevich's avatar
Andrei Paskevich committed
86
  | Tapp (ls,[t]) when ls_equal ls fs_old -> t_at_old (remove_old t)
87 88 89 90 91 92 93 94
  | _ -> t_map remove_old f

(* replace every occurrence of [at(t,'now)] with [t] *)
let rec remove_at f = match f.t_node with
  | Tapp (ls, [t; { t_node = Tapp (fs,[]) }])
    when ls_equal ls fs_at && ls_equal fs fs_now -> remove_at t
  | _ -> t_map remove_at f

95 96 97 98
(* replace [at(t,'old)] with [at(t,lab)] everywhere in formula [f] *)
let old_mark lab t = t_subst_single vs_old (t_var lab) t

(* replace [at(t,lab)] with [at(t,'now)] everywhere in formula [f] *)
Andrei Paskevich's avatar
Andrei Paskevich committed
99 100
let erase_mark lab t = t_subst_single lab t_now t

Andrei Paskevich's avatar
Andrei Paskevich committed
101 102
(* retreat to the point of the current postcondition's ['old] *)
let backstep fn q xq =
Andrei Paskevich's avatar
Andrei Paskevich committed
103 104 105
  let lab = fresh_mark () in
  let f = fn (old_mark lab q) (Mexn.map (old_mark lab) xq) in
  erase_mark lab f
106

107
(** WP utilities *)
108 109 110 111 112 113 114

let default_exn_post xs _ =
  let vs = create_vsymbol (id_fresh "result") (ty_of_ity xs.xs_ity) in
  create_post vs t_true

let default_post vty ef =
  let vs = create_vsymbol (id_fresh "result") (ty_of_vty vty) in
115
  create_post vs t_true, Mexn.mapi default_exn_post ef.eff_raises
116

117 118 119 120 121
let wp_label e f =
  let loc = if f.t_loc = None then e.e_loc else f.t_loc in
  let lab = Ident.Slab.union e.e_label f.t_label in
  t_label ?loc lab f

Andrei Paskevich's avatar
Andrei Paskevich committed
122
let expl_pre       = Ident.create_label "expl:precondition"
123
let expl_post      = Ident.create_label "expl:postcondition"
Andrei Paskevich's avatar
Andrei Paskevich committed
124
let expl_xpost     = Ident.create_label "expl:exceptional postcondition"
125
let expl_assume    = Ident.create_label "expl:assumption"
Andrei Paskevich's avatar
Andrei Paskevich committed
126 127
let expl_assert    = Ident.create_label "expl:assertion"
let expl_check     = Ident.create_label "expl:check"
MARCHE Claude's avatar
MARCHE Claude committed
128
let expl_absurd    = Ident.create_label "expl:unreachable point"
129
let expl_type_inv  = Ident.create_label "expl:type invariant"
Andrei Paskevich's avatar
Andrei Paskevich committed
130 131
let expl_loop_init = Ident.create_label "expl:loop invariant init"
let expl_loop_keep = Ident.create_label "expl:loop invariant preservation"
132 133
let expl_loopvar   = Ident.create_label "expl:loop variant decrease"
let expl_variant   = Ident.create_label "expl:variant decrease"
134

135 136 137 138 139
let rec wp_expl l f = match f.t_node with
  | _ when Slab.mem Split_goal.stop_split f.t_label -> t_label_add l f
  | Tbinop (Tand,f1,f2) -> t_label_copy f (t_and (wp_expl l f1) (wp_expl l f2))
  | Teps _ -> t_label_add l f (* post-condition, push down later *)
  | _ -> f
140

141
let wp_and ~sym f1 f2 =
142 143
  if sym then t_and_simp f1 f2 else t_and_asym_simp f1 f2

144
let wp_ands ~sym fl =
145 146
  if sym then t_and_simp_l fl else t_and_asym_simp_l fl

147
let wp_implies f1 f2 = t_implies_simp f1 f2
148

149 150
let wp_let v t f = t_let_close_simp v t f

151 152
let wp_forall vl f = t_forall_close_simp vl [] f

153 154 155 156 157 158 159
let is_equality_for v f = match f.t_node with
  | Tapp (ps, [{ t_node = Tvar u }; t])
    when ls_equal ps ps_equ && vs_equal u v && not (Mvs.mem v t.t_vars) ->
      Some t
  | _ ->
      None

160 161 162 163 164
let wp_forall_post v p f =
  (* we optimize for the case when a postcondition
     is of the form (... /\ result = t /\ ...) *)
  let rec down p = match p.t_node with
    | Tbinop (Tand,l,r) ->
165 166 167 168 169 170
        let t, l, r =
          let t, l = down l in
          if t <> None then t, l, r else
            let t, r = down r in t, l, r
        in
        t, if t = None then p else t_label_copy p (t_and_simp l r)
171
    | _ ->
172 173
        let t = is_equality_for v p in
        t, if t = None then p else t_true
174 175 176 177 178 179
  in
  if ty_equal v.vs_ty ty_unit then
    t_subst_single v t_void (wp_implies p f)
  else match down p with
    | Some t, p -> wp_let v t (wp_implies p f)
    | _ -> wp_forall [v] (wp_implies p f)
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194
let t_and_subst v t1 t2 =
  (* if [t1] defines variable [v], return [t2] with [v] replaced by its
     definition. Otherwise return [t1 /\ t2] *)
  match is_equality_for v t1 with
  | Some def -> t_subst_single v def t2
  | None -> t_and_simp t1 t2

let t_implies_subst v t1 t2 =
  (* if [t1] defines variable [v], return [t2] with [v] replaced by its
     definition. Otherwise return [t1 -> t2] *)
  match is_equality_for v t1 with
  | Some def -> t_subst_single v def t2
  | None -> t_implies_simp t1 t2

195
let regs_of_writes eff = Sreg.union eff.eff_writes eff.eff_ghostw
Andrei Paskevich's avatar
Andrei Paskevich committed
196
let exns_of_raises eff = Sexn.union eff.eff_raises eff.eff_ghostx
197

198 199
let open_post q =
  let v, f = open_post q in
200
  v, Slab.fold wp_expl q.t_label f
201

202 203 204 205 206 207 208 209 210 211 212
let open_unit_post q =
  let v, q = open_post q in
  t_subst_single v t_void q

let create_unit_post =
  let v = create_vsymbol (id_fresh "void") ty_unit in
  fun q -> create_post v q

let vs_result e =
  create_vsymbol (id_fresh ?loc:e.e_loc "result") (ty_of_vty e.e_vty)

213 214 215 216 217 218
(** WP state *)

type wp_env = {
  prog_known : Mlw_decl.known_map;
  pure_known : Decl.known_map;
  global_env : Env.env;
Andrei Paskevich's avatar
Andrei Paskevich committed
219 220 221 222 223
  ps_int_le  : Term.lsymbol;
  ps_int_ge  : Term.lsymbol;
  ps_int_lt  : Term.lsymbol;
  ps_int_gt  : Term.lsymbol;
  fs_int_pl  : Term.lsymbol;
224
  fs_int_mn  : Term.lsymbol;
225
  letrec_var : term list Mint.t;
226
}
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
let decrease_alg ?loc env old_t t =
  let oty = t_type old_t in
  let nty = t_type t in
  let quit () =
    Loc.errorm ?loc "no default order for %a" Pretty.print_term t in
  let ts = match oty with { ty_node = Tyapp (ts,_) } -> ts | _ -> quit () in
  let csl = Decl.find_constructors env.pure_known ts in
  if csl = [] then quit ();
  let sbs = ty_match Mtv.empty (ty_app ts (List.map ty_var ts.ts_args)) oty in
  let add_arg acc fty =
    let fty = ty_inst sbs fty in
    if ty_equal fty nty then
      let vs = create_vsymbol (id_fresh "f") nty in
      t_or_simp acc (t_equ (t_var vs) t), pat_var vs
    else acc, pat_wild fty in
  let add_cs (cs,_) =
244
    let f, pl = Lists.map_fold_left add_arg t_false cs.ls_args in
245 246 247 248 249
    t_close_branch (pat_app cs pl oty) f in
  t_case old_t (List.map add_cs csl)

let decrease_rel ?loc env old_t t = function
  | Some ls -> ps_app ls [t; old_t]
250 251
  | None when ty_equal (t_type old_t) ty_int
           && ty_equal (t_type t) ty_int ->
252
      t_and
253
        (ps_app env.ps_int_le [t_nat_const 0; old_t])
254 255 256
        (ps_app env.ps_int_lt [t; old_t])
  | None -> decrease_alg ?loc env old_t t

257
let decrease loc lab env olds varl =
258
  let rec decr pr olds varl = match olds, varl with
259 260 261 262 263 264 265 266 267 268
    | [], [] -> (* empty variant *)
        t_true
    | [old_t], [t, rel] ->
        t_and_simp pr (decrease_rel ?loc env old_t t rel)
    | old_t::_, (t,_)::_ when not (oty_equal old_t.t_ty t.t_ty) ->
        Loc.errorm ?loc "cannot use lexicographic ordering"
    | old_t::olds, (t,rel)::varl ->
        let dt = t_and_simp pr (decrease_rel ?loc env old_t t rel) in
        let pr = t_and_simp pr (t_equ old_t t) in
        t_or_simp dt (decr pr olds varl)
269
    | _ -> assert false
Andrei Paskevich's avatar
Andrei Paskevich committed
270
  in
271 272 273 274
  t_label ?loc lab (decr t_true olds varl)

let expl_variant = Slab.add Split_goal.stop_split (Slab.singleton expl_variant)
let expl_loopvar = Slab.add Split_goal.stop_split (Slab.singleton expl_loopvar)
Andrei Paskevich's avatar
Andrei Paskevich committed
275

276 277
(** Reconstruct pure values after writes *)

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
let model1_lab = Slab.singleton (create_label "model:1")
let model2_lab = Slab.singleton (create_label "model:quantify(2)")
let model3_lab = Slab.singleton (create_label "model:cond")

let mk_var id label ty = create_vsymbol (id_clone ~label id) ty

(* replace "contemporary" variables with fresh ones *)
let rec subst_at_now now mvs t = match t.t_node with
  | Tvar vs when now ->
      begin try t_var (Mvs.find vs mvs) with Not_found -> t end
  | Tapp (ls, _) when ls_equal ls fs_old -> assert false
  | Tapp (ls, [_; mark]) when ls_equal ls fs_at ->
      let now = match mark.t_node with
        | Tvar vs when vs_equal vs vs_old -> assert false
        | Tapp (ls,[]) when ls_equal ls fs_now -> true
        | _ -> false in
      t_map (subst_at_now now mvs) t
  | Tlet _ | Tcase _ | Teps _ | Tquant _ ->
      (* do not open unless necessary *)
      let mvs = Mvs.set_inter mvs t.t_vars in
      if Mvs.is_empty mvs then t else
      t_map (subst_at_now now mvs) t
  | _ ->
      t_map (subst_at_now now mvs) t

(* generic expansion of an algebraic type value *)
304
let analyze_var fn_down fn_join lkm km vs ity =
305 306
  let var_of_fd fd =
    create_vsymbol (id_fresh "y") (ty_of_ity fd.fd_ity) in
307
  let branch (cs,fdl) =
308 309 310
    let vl = List.map var_of_fd fdl in
    let pat = pat_app cs (List.map pat_var vl) vs.vs_ty in
    let t = fn_join cs (List.map2 fn_down vl fdl) vs.vs_ty in
311
    t_close_branch pat t in
312
  let csl = Mlw_decl.inst_constructors lkm km ity in
313
  t_case_simp (t_var vs) (List.map branch csl)
314

315 316
(* given a map of modified regions, construct the updated value of [vs] *)
let update_var env (mreg : vsymbol Mreg.t) vs =
317
  let rec update vs { fd_ity = ity; fd_mut = mut } =
318 319
    (* are we a mutable variable? *)
    let get_vs r = Mreg.find_def vs r mreg in
320
    let vs = Opt.fold (fun _ -> get_vs) vs mut in
321 322
    (* should we update our value further? *)
    let check_reg r _ = reg_occurs r ity.ity_vars in
323
    if ity_immutable ity || not (Mreg.exists check_reg mreg) then t_var vs
324 325
    else analyze_var update fs_app env.pure_known env.prog_known vs ity in
  update vs { fd_ity = ity_of_vs vs; fd_ghost = false; fd_mut = None }
326

327 328 329 330
(* given a map of modified regions, update every affected variable in [f] *)
let update_term env (mreg : vsymbol Mreg.t) f =
  (* [vars] : modified variable -> updated value *)
  let update vs _ = match update_var env mreg vs with
331 332
    | { t_node = Tvar nv } when vs_equal vs nv -> None
    | t -> Some t in
333 334
  let vars = Mvs.mapi_filter update f.t_vars in
  (* [vv'] : modified variable -> fresh variable *)
335 336
  let new_var vs _ = mk_var vs.vs_name model2_lab vs.vs_ty in
  let vv' = Mvs.mapi new_var vars in
337
  (* update modified variables *)
338
  let update v t f = wp_let (Mvs.find v vv') t f in
339 340
  Mvs.fold update vars (subst_at_now true vv' f)

341 342 343 344 345
let get_single_region_of_var vs =
  match (ity_of_vs vs).ity_node with
    | Ityapp (_,_,[r]) -> Some r
    | _ -> None

346 347
(* look for a variable with a single region equal to [reg] *)
let var_of_region reg f =
348 349 350
  let test vs _ acc =
    match get_single_region_of_var vs with
    | Some r when reg_equal r reg -> Some vs
351
    | _ -> acc in
352 353 354 355 356 357 358 359 360 361 362 363 364
  Mvs.fold test f.t_vars None

let quantify env regs f =
  (* mreg : modified region -> vs *)
  let get_var reg () =
    let ty = ty_of_ity reg.reg_ity in
    let id = match var_of_region reg f with
      | Some vs -> vs.vs_name
      | None -> reg.reg_name in
    mk_var id model1_lab ty in
  let mreg = Mreg.mapi get_var regs in
  (* quantify over the modified resions *)
  let f = update_term env mreg f in
365
  wp_forall (List.rev (Mreg.values mreg)) f
366

367 368 369 370 371 372 373 374
(** Invariants *)

let get_invariant km t =
  let ty = t_type t in
  let ts = match ty.ty_node with
    | Tyapp (ts,_) -> ts
    | _ -> assert false in
  let rec find_td = function
375
    | (its,_,inv) :: _ when ts_equal ts its.its_ts -> inv
376 377 378 379 380 381 382 383
    | _ :: tdl -> find_td tdl
    | [] -> assert false in
  let pd = Mid.find ts.ts_name km in
  let inv = match pd.Mlw_decl.pd_node with
    | Mlw_decl.PDdata tdl -> find_td tdl
    | _ -> assert false in
  let sbs = Ty.ty_match Mtv.empty (t_type inv) ty in
  let u, p = open_post (t_ty_subst sbs Mvs.empty inv) in
384
  wp_expl expl_type_inv (t_subst_single u t p)
385 386 387 388 389

let ps_inv = Term.create_psymbol (id_fresh "inv")
  [ty_var (create_tvsymbol (id_fresh "a"))]

let full_invariant lkm km vs ity =
390
  let rec update vs { fd_ity = ity } =
391
    if not (ity_has_inv ity) then t_true else
392 393 394 395 396 397 398 399 400
    (* what is our current invariant? *)
    let f = match ity.ity_node with
      | Ityapp (its,_,_) when its.its_inv ->
          if Debug.test_flag no_track
          then get_invariant km (t_var vs)
          else ps_app ps_inv [t_var vs]
      | _ -> t_true in
    (* what are our sub-invariants? *)
    let join _ fl _ = wp_ands ~sym:true fl in
401
    let g = analyze_var update join lkm km vs ity in
402 403 404
    (* put everything together *)
    wp_and ~sym:true f g
  in
405
  update vs { fd_ity = ity; fd_ghost = false; fd_mut = None }
406 407

(** Value tracking *)
408 409 410

type point = int
type value = point list Mls.t (* constructor -> field list *)
411

412
type state = {
413 414
  st_km   : Mlw_decl.known_map;
  st_lkm  : Decl.known_map;
415
  st_mem  : value Hint.t;
416
  st_next : point ref;
417 418
}

419
(* dead code
420 421 422
type names = point Mvs.t  (* variable -> point *)
type condition = lsymbol Mint.t (* point -> constructor *)
type lesson = condition list Mint.t (* point -> conditions for invariant *)
423
*)
424 425 426 427

let empty_state lkm km = {
  st_km   = km;
  st_lkm  = lkm;
428
  st_mem  = Hint.create 5;
429
  st_next = ref 0;
430 431 432
}

let next_point state =
433
  let res = !(state.st_next) in incr state.st_next; res
434

435
let make_value state ty =
436 437 438
  let get_p _ = next_point state in
  let new_cs cs = List.map get_p cs.ls_args in
  let add_cs m (cs,_) = Mls.add cs (new_cs cs) m in
439
  let csl = match ty.ty_node with
440 441
    | Tyapp (ts,_) -> Decl.find_constructors state.st_lkm ts
    | _ -> [] in
442 443
  List.fold_left add_cs Mls.empty csl

444
let match_point state ty p =
445
  try Hint.find state.st_mem p with Not_found ->
446
  let value = make_value state ty in
447
  if not (Mls.is_empty value) then
448
    Hint.replace state.st_mem p value;
449 450
  value

451 452 453 454 455 456 457 458 459 460 461 462 463 464
let rec open_pattern state names value p pat = match pat.pat_node with
  | Pwild -> names
  | Pvar vs -> Mvs.add vs p names
  | Papp (cs,patl) ->
      let add_pat names p pat =
        let value = match_point state pat.pat_ty p in
        open_pattern state names value p pat in
      List.fold_left2 add_pat names (Mls.find cs value) patl
  | Por _ ->
      let add_vs vs s = Mvs.add vs (next_point state) s in
      Svs.fold add_vs pat.pat_vars names
  | Pas (pat,vs) ->
      open_pattern state (Mvs.add vs p names) value p pat

465 466 467 468
let rec point_of_term state names t = match t.t_node with
  | Tvar vs ->
      Mvs.find vs names
  | Tapp (ls, tl) ->
469
      begin match Mid.find ls.ls_name state.st_lkm with
470 471 472 473 474 475 476 477 478
        | { Decl.d_node = Decl.Ddata tdl } ->
            let is_cs (cs,_) = ls_equal ls cs in
            let is_cs (_,csl) = List.exists is_cs csl in
            if List.exists is_cs tdl
            then point_of_constructor state names ls tl
            else point_of_projection state names ls (List.hd tl)
        | _ -> next_point state
      end
  | Tlet (t1, bt) ->
479
      let p1 = point_of_term state names t1 in
480
      let v, t2 = t_open_bound bt in
481 482 483 484 485 486 487
      let names = Mvs.add v p1 names in
      point_of_term state names t2
  | Tcase (t1,[br]) ->
      let pat, t2 = t_open_branch br in
      let p1 = point_of_term state names t1 in
      let value = match_point state pat.pat_ty p1 in
      let names = open_pattern state names value p1 pat in
488
      point_of_term state names t2
489 490 491 492
  | Tcase (t1,bl) ->
      (* we treat here the case of a value update: the value
         of each branch must be a distinct constructor *)
      let p = next_point state in
493
      let ty = Opt.get t.t_ty in
494
      let p1 = point_of_term state names t1 in
495
      let value = match_point state (Opt.get t1.t_ty) p1 in
496 497 498 499 500 501 502 503 504 505 506 507
      let branch acc br =
        let pat, t2 = t_open_branch br in
        let ls = match t2.t_node with
          | Tapp (ls,_) -> ls | _ -> raise Exit in
        let names = open_pattern state names value p1 pat in
        let p2 = point_of_term state names t2 in
        let v2 = match_point state ty p2 in
        Mls.add_new Exit ls (Mls.find_exn Exit ls v2) acc
      in
      begin try
        let value = List.fold_left branch Mls.empty bl in
        let value = Mls.set_union value (make_value state ty) in
508
        Hint.replace state.st_mem p value
509 510 511
      with Exit -> () end;
      p
  | Tconst _ | Tif _ | Teps _ -> next_point state
512 513 514 515
  | Tquant _ | Tbinop _ | Tnot _ | Ttrue | Tfalse -> assert false

and point_of_constructor state names ls tl =
  let p = next_point state in
516
  let pl = List.map (point_of_term state names) tl in
517
  let value = make_value state (Opt.get ls.ls_value) in
518
  let value = Mls.add ls pl value in
519
  Hint.replace state.st_mem p value;
520 521 522
  p

and point_of_projection state names ls t1 =
523
  let ty = Opt.get t1.t_ty in
524
  let csl = match ty.ty_node with
525
    | Tyapp (ts,_) -> Decl.find_constructors state.st_lkm ts
526 527 528
    | _ -> assert false in
  match csl with
    | [cs,pjl] ->
529
        let p1 = point_of_term state names t1 in
530
        let value = match_point state ty p1 in
531 532 533 534 535 536 537
        let rec find_p pjl pl = match pjl, pl with
          | Some pj::_, p::_ when ls_equal ls pj -> p
          | _::pjl, _::pl -> find_p pjl pl
          | _ -> assert false in
        find_p pjl (Mls.find cs value)
    | _ -> next_point state (* more than one, can't choose *)

538 539 540 541 542 543
let rec track_values state names lesson cond f = match f.t_node with
  | Tapp (ls, [t1]) when ls_equal ls ps_inv ->
      let p1 = point_of_term state names t1 in
      let condl = Mint.find_def [] p1 lesson in
      let contains c1 c2 = Mint.submap (fun _ -> ls_equal) c2 c1 in
      if List.exists (contains cond) condl then
544
        lesson, t_label_copy f t_true
545 546 547 548
      else
        let good c = not (contains c cond) in
        let condl = List.filter good condl in
        let l = Mint.add p1 (cond::condl) lesson in
549
        l, t_label_copy f (get_invariant state.st_km t1)
550 551 552 553 554 555 556 557 558 559 560 561 562 563
  | Tbinop (Timplies, f1, f2) ->
      let l, f1 = track_values state names lesson cond f1 in
      let _, f2 = track_values state names l cond f2 in
      lesson, t_label_copy f (t_implies_simp f1 f2)
  | Tbinop (Tand, f1, f2) ->
      let l, f1 = track_values state names lesson cond f1 in
      let l, f2 = track_values state names l cond f2 in
      l, t_label_copy f (t_and_simp f1 f2)
  | Tif (fc, f1, f2) ->
      let _, f1 = track_values state names lesson cond f1 in
      let _, f2 = track_values state names lesson cond f2 in
      lesson, t_label_copy f (t_if_simp fc f1 f2)
  | Tcase (t1, bl) ->
      let p1 = point_of_term state names t1 in
564
      let value = match_point state (Opt.get t1.t_ty) p1 in
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
      let is_pat_var = function
        | { pat_node = Pvar _ } -> true | _ -> false in
      let branch l br =
        let pat, f1, cb = t_open_branch_cb br in
        let learn, cond = match bl, pat.pat_node with
          | [_], _ -> true, cond (* one branch, can learn *)
          | _, Papp (cs, pl) when List.for_all is_pat_var pl ->
              (try true, Mint.add_new Exit p1 cs cond (* can learn *)
              with Exit -> false, cond) (* contradiction, cannot learn *)
          | _, _ -> false, cond (* complex pattern, will not learn *)
        in
        let names = open_pattern state names value p1 pat in
        let m, f1 = track_values state names lesson cond f1 in
        let l = if learn then m else l in
        l, cb pat f1
      in
581
      let l, bl = Lists.map_fold_left branch lesson bl in
582
      l, t_label_copy f (t_case_simp t1 bl)
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
  | Tlet (t1, bf) ->
      let p1 = point_of_term state names t1 in
      let v, f1, cb = t_open_bound_cb bf in
      let names = Mvs.add v p1 names in
      let l, f1 = track_values state names lesson cond f1 in
      l, t_label_copy f (t_let_simp t1 (cb v f1))
  | Tquant (Tforall, qf) ->
      let vl, trl, f1, cb = t_open_quant_cb qf in
      let add_vs s vs = Mvs.add vs (next_point state) s in
      let names = List.fold_left add_vs names vl in
      let l, f1 = track_values state names lesson cond f1 in
      l, t_label_copy f (t_forall_simp (cb vl trl f1))
  | Tbinop ((Tor|Tiff),_,_) | Tquant (Texists,_)
  | Tapp _ | Tnot _ | Ttrue | Tfalse -> lesson, f
  | Tvar _ | Tconst _ | Teps _ -> assert false

let track_values lkm km f =
  let state = empty_state lkm km in
  let _, f = track_values state Mvs.empty Mint.empty Mint.empty f in
  f
603

604 605
(** Weakest preconditions *)

606
let rec wp_expr env e q xq =
Andrei Paskevich's avatar
Andrei Paskevich committed
607
  let f = wp_desc env e q xq in
608
  if Debug.test_flag debug then begin
609
    Format.eprintf "@[--------@\n@[<hov 2>e = %a@]@\n" Mlw_pretty.print_expr e;
610 611 612
    Format.eprintf "@[<hov 2>q = %a@]@\n" Pretty.print_term q;
    Format.eprintf "@[<hov 2>f = %a@]@\n----@]@." Pretty.print_term f;
  end;
613
  f
614

615
and wp_desc env e q xq = match e.e_node with
616 617 618
  | Elogic t ->
      let v, q = open_post q in
      let t = wp_label e t in
619 620 621
      (* NOTE: if you replace this t_subst by t_let or anything else,
         you must handle separately the case "let mark = 'now in ...",
         which requires 'now to be substituted for mark in q *)
622 623 624 625
      if ty_equal v.vs_ty ty_mark then
        t_subst_single v (to_term t) q
      else
        t_let_close_simp v (to_term t) q
Andrei Paskevich's avatar
Andrei Paskevich committed
626 627 628
  | Evalue pv ->
      let v, q = open_post q in
      let t = wp_label e (t_var pv.pv_vs) in
629
      t_subst_single v t q
630 631 632
  | Earrow _ ->
      let q = open_unit_post q in
      (* wp_label e *) q (* FIXME? *)
633
  | Elet ({ let_sym = LetV v; let_expr = e1 }, e2)
634
    when Opt.equal Loc.equal v.pv_vs.vs_name.id_loc e1.e_loc ->
635 636 637 638 639
    (* we push the label down, past the implicitly inserted "let" *)
      let w = wp_expr env (e_label_copy e e2) q xq in
      let q = create_post v.pv_vs w in
      wp_expr env e1 q xq
  | Elet ({ let_sym = LetV v; let_expr = e1 }, e2) ->
640
      let w = wp_expr env e2 q xq in
641
      let q = create_post v.pv_vs w in
642
      wp_label e (wp_expr env e1 q xq)
643 644 645 646
  | Elet ({ let_sym = LetA _; let_expr = e1 }, e2) ->
      let w = wp_expr env e2 q xq in
      let q = create_unit_post w in
      wp_label e (wp_expr env e1 q xq)
647 648
  | Erec (fdl, e1) ->
      let fr = wp_rec_defn env fdl in
649 650 651
      let fe = wp_expr env e1 q xq in
      let fr = wp_ands ~sym:true fr in
      wp_label e (wp_and ~sym:true fr fe)
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
  | Eif (e1, e2, e3) ->
      let res = vs_result e1 in
      let test = t_equ (t_var res) t_bool_true in
      let test = t_label ?loc:e1.e_loc model3_lab test in
      (* if both branches are pure, do not split *)
      let w =
        let get_term e = match e.e_node with
          | Elogic t -> to_term t
          | Evalue v -> t_var v.pv_vs
          | _ -> raise Exit in
        try
          let r2 = get_term e2 in
          let r3 = get_term e3 in
          let v, q = open_post q in
          t_subst_single v (t_if_simp test r2 r3) q
        with Exit ->
          let w2 = wp_expr env e2 q xq in
          let w3 = wp_expr env e3 q xq in
          t_if_simp test w2 w3
      in
      let q = create_post res w in
      wp_label e (wp_expr env e1 q xq)
674 675 676 677 678 679 680 681 682 683 684
  (* optimization for the particular case let _ = e1 in e2 *)
  | Ecase (e1, [{ ppat_pattern = { pat_node = Term.Pwild }}, e2]) ->
      let w = wp_expr env e2 q xq in
      let q = create_post (vs_result e1) w in
      wp_label e (wp_expr env e1 q xq)
  (* optimization for the particular case let () = e1 in e2 *)
  | Ecase (e1, [{ ppat_pattern = { pat_node = Term.Papp (cs,[]) }}, e2])
    when ls_equal cs fs_void ->
      let w = wp_expr env e2 q xq in
      let q = create_unit_post w in
      wp_label e (wp_expr env e1 q xq)
685 686 687 688
  | Ecase (e1, bl) ->
      let res = vs_result e1 in
      let branch ({ ppat_pattern = pat }, e) =
        t_close_branch pat (wp_expr env e q xq) in
689
      let w = t_case_simp (t_var res) (List.map branch bl) in
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
      let q = create_post res w in
      wp_label e (wp_expr env e1 q xq)
  | Eghost e1 ->
      wp_label e (wp_expr env e1 q xq)
  | Eraise (xs, e1) ->
      let q = try Mexn.find xs xq with
        Not_found -> assert false in
      wp_label e (wp_expr env e1 q xq)
  | Etry (e1, bl) ->
      let branch (xs,v,e) acc =
        let w = wp_expr env e q xq in
        let q = create_post v.pv_vs w in
        Mexn.add xs q acc in
      let xq = List.fold_right branch bl xq in
      wp_label e (wp_expr env e1 q xq)
705 706
  | Eassert (Aassert, f) ->
      let q = open_unit_post q in
707
      let f = wp_expl expl_assert f in
708 709 710
      wp_and ~sym:false (wp_label e f) q
  | Eassert (Acheck, f) ->
      let q = open_unit_post q in
711
      let f = wp_expl expl_check f in
712 713 714
      wp_and ~sym:true (wp_label e f) q
  | Eassert (Aassume, f) ->
      let q = open_unit_post q in
715
      let f = wp_expl expl_assume f in
716
      wp_implies (wp_label e f) q
Andrei Paskevich's avatar
Andrei Paskevich committed
717
  | Eabsurd ->
MARCHE Claude's avatar
MARCHE Claude committed
718
      wp_label e (t_label_add expl_absurd t_absurd)
719 720
  | Eany spec ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
Andrei Paskevich's avatar
Andrei Paskevich committed
721 722
      let p = t_label ?loc:e.e_loc p.t_label p in
      (* TODO: propagate call labels into tyc.c_post *)
723
      let w = wp_abstract env spec.c_effect spec.c_post spec.c_xpost q xq in
724
      wp_and ~sym:false p w
725 726
  | Eapp (e1,_,spec) ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
727
      let p = t_label ?loc:e.e_loc p.t_label p in
728
      let d =
729 730
        if spec.c_letrec = 0 || spec.c_variant = [] then t_true else
        let olds = Mint.find_def [] spec.c_letrec env.letrec_var in
731
        if olds = [] then t_true (* we are out of letrec *) else
732
        decrease e.e_loc expl_variant env olds spec.c_variant in
733
      (* TODO: propagate call labels into tyc.c_post *)
734
      let w = wp_abstract env spec.c_effect spec.c_post spec.c_xpost q xq in
735
      let w = wp_and ~sym:true d (wp_and ~sym:false p w) in
736 737
      let q = create_unit_post w in
      wp_expr env e1 q xq (* FIXME? should (wp_label e) rather be here? *)
738 739
  | Eabstr (e1, spec) ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
740 741 742 743 744 745 746
      (* every exception uncovered in spec is passed to xq *)
      let c_xq = Mexn.set_union spec.c_xpost xq in
      let w1 = backstep (wp_expr env e1) spec.c_post c_xq in
      (* so that now we don't need to prove these exceptions again *)
      let lost = Mexn.set_diff (exns_of_raises e1.e_effect) spec.c_xpost in
      let c_eff = Sexn.fold_left eff_remove_raise e1.e_effect lost in
      let w2 = wp_abstract env c_eff spec.c_post spec.c_xpost q xq in
747
      wp_and ~sym:false p (wp_and ~sym:true (wp_label e w1) w2)
748 749 750 751 752 753 754 755
  | Eassign (pl, e1, reg, pv) ->
      (* if we create an intermediate variable npv to represent e1
         in the post-condition of the assign, the call to wp_abstract
         will have to update this variable separately (in addition to
         all existing variables in q that require update), creating
         duplication.  To avoid it, we try to detect whether the value
         of e1 can be represented by an existing pure term that can
         be reused in the post-condition. *)
756 757
      let rec get_term d = match d.e_node with
        | Eghost e | Elet (_,e) | Erec (_,e) -> get_term e
758 759 760
        | Evalue v -> vs_result e1, t_var v.pv_vs
        | Elogic t -> vs_result e1, t
        | _ ->
761
            let ity = ity_of_expr e1 in
762 763
            let id = id_fresh ?loc:e1.e_loc "o" in
            (* must be a pvsymbol or restore_pv will fail *)
764
            let npv = create_pvsymbol id ~ghost:e1.e_ghost ity in
765
            npv.pv_vs, t_var npv.pv_vs
766
      in
767 768 769
      let res, t = get_term e1 in
      let t = fs_app pl.pl_ls [t] pv.pv_vs.vs_ty in
      let c_q = create_unit_post (t_equ t (t_var pv.pv_vs)) in
770 771
      let eff = eff_write eff_empty reg in
      let w = wp_abstract env eff c_q Mexn.empty q xq in
772
      let q = create_post res w in
773
      wp_label e (wp_expr env e1 q xq)
Andrei Paskevich's avatar
Andrei Paskevich committed
774 775 776
  | Eloop (inv, varl, e1) ->
      (* TODO: what do we do about well-foundness? *)
      let i = wp_expl expl_loop_keep inv in
777
      let olds = List.map (fun (t,_) -> t_at_old t) varl in
778 779 780 781
      let i = if varl = [] then i else
        let d = decrease e.e_loc expl_loopvar env olds varl in
        wp_and ~sym:true i d in
      let q = create_unit_post i in
Andrei Paskevich's avatar
Andrei Paskevich committed
782
      let w = backstep (wp_expr env e1) q xq in
Andrei Paskevich's avatar
Andrei Paskevich committed
783 784 785 786
      let regs = regs_of_writes e1.e_effect in
      let w = quantify env regs (wp_implies inv w) in
      let i = wp_expl expl_loop_init inv in
      wp_label e (wp_and ~sym:true i w)
Andrei Paskevich's avatar
Andrei Paskevich committed
787 788 789 790 791 792 793 794
  | Efor ({pv_vs = x}, ({pv_vs = v1}, d, {pv_vs = v2}), inv, e1) ->
      (* wp(for x = v1 to v2 do inv { I(x) } e1, Q, R) =
             v1 > v2  -> Q
         and v1 <= v2 ->     I(v1)
                         and forall S. forall i. v1 <= i <= v2 ->
                                                 I(i) -> wp(e1, I(i+1), R)
                                       and I(v2+1) -> Q *)
      let gt, le, incr = match d with
795 796 797 798
        | Mlw_expr.To     -> env.ps_int_gt, env.ps_int_le, env.fs_int_pl
        | Mlw_expr.DownTo -> env.ps_int_lt, env.ps_int_ge, env.fs_int_mn
      in
      let one = t_nat_const 1 in
Andrei Paskevich's avatar
Andrei Paskevich committed
799 800 801 802
      let v1_gt_v2 = ps_app gt [t_var v1; t_var v2] in
      let v1_le_v2 = ps_app le [t_var v1; t_var v2] in
      let q = open_unit_post q in
      let wp_init =
803
        wp_expl expl_loop_init (t_subst_single x (t_var v1) inv) in
Andrei Paskevich's avatar
Andrei Paskevich committed
804
      let wp_step =
805
        let next = fs_app incr [t_var x; one] ty_int in
806 807
        let post = wp_expl expl_loop_keep (t_subst_single x next inv) in
        wp_expr env e1 (create_unit_post post) xq in
Andrei Paskevich's avatar
Andrei Paskevich committed
808
      let wp_last =
809
        let v2pl1 = fs_app incr [t_var v2; one] ty_int in
Andrei Paskevich's avatar
Andrei Paskevich committed
810 811 812 813 814
        wp_implies (t_subst_single x v2pl1 inv) q in
      let wp_good = wp_and ~sym:true
        wp_init
        (quantify env (regs_of_writes e1.e_effect)
           (wp_and ~sym:true
815
              (wp_forall [x] (wp_implies
Andrei Paskevich's avatar
Andrei Paskevich committed
816 817
                (wp_and ~sym:true (ps_app le [t_var v1; t_var x])
                                  (ps_app le [t_var x;  t_var v2]))
818
                (wp_implies inv wp_step)))
Andrei Paskevich's avatar
Andrei Paskevich committed
819 820 821 822 823 824 825
              wp_last))
      in
      let wp_full = wp_and ~sym:true
        (wp_implies v1_gt_v2 q)
        (wp_implies v1_le_v2 wp_good)
      in
      wp_label e wp_full
826

Andrei Paskevich's avatar
Andrei Paskevich committed
827 828 829 830 831 832 833
and wp_abstract env c_eff c_q c_xq q xq =
  let regs = regs_of_writes c_eff in
  let exns = exns_of_raises c_eff in
  let quantify_post c_q q =
    let v, f = open_post q in
    let c_v, c_f = open_post c_q in
    let c_f = t_subst_single c_v (t_var v) c_f in
834
    let f = wp_forall_post v c_f f in
Andrei Paskevich's avatar
Andrei Paskevich committed
835 836 837 838 839 840 841
    quantify env regs f
  in
  let quantify_xpost _ c_xq xq =
    Some (quantify_post c_xq xq) in
  let proceed c_q c_xq =
    let f = quantify_post c_q q in
    (* every xs in exns is guaranteed to be in c_xq and xq *)
842 843
    assert (Mexn.set_submap exns xq);
    assert (Mexn.set_submap exns c_xq);
Andrei Paskevich's avatar
Andrei Paskevich committed
844 845 846
    let xq = Mexn.set_inter xq exns in
    let c_xq = Mexn.set_inter c_xq exns in
    let mexn = Mexn.inter quantify_xpost c_xq xq in
847
    (* FIXME? This wp_ands is asymmetric in Pgm_wp *)
Andrei Paskevich's avatar
Andrei Paskevich committed
848 849
    wp_ands ~sym:true (f :: Mexn.values mexn)
  in
Andrei Paskevich's avatar
Andrei Paskevich committed
850
  backstep proceed c_q c_xq
Andrei Paskevich's avatar
Andrei Paskevich committed
851

852
and wp_fun_regs ps l = (* regions to refresh at the top of function WP *)
853 854 855 856 857
  let add_arg = let seen = ref Sreg.empty in fun sbs pv ->
    (* we only need to "havoc" the regions that occur twice in [l.l_args].
       If a region in an argument is shared with the context, then is it
       already frozen in [ps.ps_subst]. If a region in an argument is not
       shared at all, the last [wp_forall] over [args] will be enough. *)
858 859 860 861 862 863 864
    let rec down sbs ity =
      let rl = match ity.ity_node with
        | Ityapp (_,_,rl) -> rl | _ -> [] in
      ity_fold down (List.fold_left add_reg sbs rl) ity
    and add_reg sbs r =
      if Sreg.mem r !seen then reg_match sbs r r else
      (seen := Sreg.add r !seen; down sbs r.reg_ity) in
865
    down sbs pv.pv_ity in
866 867 868 869 870
  let sbs = List.fold_left add_arg ps.ps_subst l.l_args in
  Mreg.map (fun _ -> ()) sbs.ity_subst_reg

and wp_fun_defn env { fun_ps = ps ; fun_lambda = l } =
  let lab = fresh_mark () and c = l.l_spec in
871
  let args = List.map (fun pv -> pv.pv_vs) l.l_args in
872 873
  let env =
    if c.c_letrec = 0 || c.c_variant = [] then env else
874
    let lab = t_var lab in
Andrei Paskevich's avatar
Andrei Paskevich committed
875
    let t_at_lab (t,_) = t_app fs_at [t; lab] t.t_ty in
876
    let tl = List.map t_at_lab c.c_variant in
877 878
    let lrv = Mint.add c.c_letrec tl env.letrec_var in
    { env with letrec_var = lrv } in
879
  let q = old_mark lab (wp_expl expl_post c.c_post) in
880
  let conv p = old_mark lab (wp_expl expl_xpost p) in
881 882
  let f = wp_expr env l.l_expr q (Mexn.map conv c.c_xpost) in
  let f = wp_implies c.c_pre (erase_mark lab f) in
883
  wp_forall args (quantify env (wp_fun_regs ps l) f)
884

885
and wp_rec_defn env fdl = List.map (wp_fun_defn env) fdl
886

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
(***
let bool_to_prop env f =
  let ts_bool  = find_ts ~pure:true env "bool" in
  let ls_andb  = find_ls ~pure:true env "andb" in
  let ls_orb   = find_ls ~pure:true env "orb" in
  let ls_notb  = find_ls ~pure:true env "notb" in
  let ls_True  = find_ls ~pure:true env "True" in
  let ls_False = find_ls ~pure:true env "False" in
  let t_True   = fs_app ls_True [] (ty_app ts_bool []) in
  let is_bool ls = ls_equal ls ls_True || ls_equal ls ls_False in