mlw_module.ml 8.19 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
(**************************************************************************)
(*                                                                        *)
(*  Copyright (C) 2010-2011                                               *)
(*    François Bobot                                                      *)
(*    Jean-Christophe Filliâtre                                           *)
(*    Claude Marché                                                       *)
(*    Andrei Paskevich                                                    *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

open Why3
open Util
open Ident
open Ty
open Theory
open Mlw_ty
open Mlw_expr
open Mlw_decl

(*
30
  module =
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    theory +
    namespace +
    program decls (no logic decl here)

  extraction to OCaml
    1. all types
         follow order given by theory, and retrieve program types when necessary
    2. logic decls (no types)
    3. program decls
*)
type namespace = {
  ns_it : itysymbol Mstr.t;  (* type symbols *)
  ns_ps : psymbol Mstr.t;    (* program symbols *)
  ns_ns : namespace Mstr.t;  (* inner namespaces *)
}

let empty_ns = {
  ns_it = Mstr.empty;
  ns_ps = Mstr.empty;
  ns_ns = Mstr.empty;
}

let ns_replace eq chk x vo vn =
  if not chk then vn else
  if eq vo vn then vo else
  raise (ClashSymbol x)

let ns_union eq chk =
  Mstr.union (fun x vn vo -> Some (ns_replace eq chk x vo vn))

let rec merge_ns chk ns1 ns2 =
  let fusion _ ns1 ns2 = Some (merge_ns chk ns1 ns2) in
  { ns_it = ns_union its_equal chk ns1.ns_it ns2.ns_it;
    ns_ps = ns_union ps_equal chk ns1.ns_ps ns2.ns_ps;
    ns_ns = Mstr.union fusion     ns1.ns_ns ns2.ns_ns; }

67
let nm_add chk x ns m = Mstr.change (function
68
  | None -> Some ns
69
  | Some os -> Some (merge_ns chk ns os)) x m
70

71
let ns_add eq chk x v m = Mstr.change (function
72
  | None -> Some v
73
  | Some vo -> Some (ns_replace eq chk x vo v)) x m
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

let it_add = ns_add its_equal
let ps_add = ns_add ps_equal

let add_it chk x ts ns = { ns with ns_it = it_add chk x ts ns.ns_it }
let add_ps chk x pf ns = { ns with ns_ps = ps_add chk x pf ns.ns_ps }
let add_ns chk x nn ns = { ns with ns_ns = nm_add chk x nn ns.ns_ns }

let rec ns_find get_map ns = function
  | []   -> assert false
  | [a]  -> Mstr.find a (get_map ns)
  | a::l -> ns_find get_map (Mstr.find a ns.ns_ns) l

let ns_find_it = ns_find (fun ns -> ns.ns_it)
let ns_find_ps = ns_find (fun ns -> ns.ns_ps)
let ns_find_ns = ns_find (fun ns -> ns.ns_ns)

(** Module *)

type modul = {
  mod_theory: theory;			(* pure theory *)
  mod_decls : pdecl list;		(* module declarations *)
  mod_export: namespace;		(* exported namespace *)
  mod_known : known_map;		(* known identifiers *)
  mod_local : Sid.t;			(* locally declared idents *)
99
  mod_used  : Sid.t;			(* used modules *)
100 101 102 103 104 105 106 107 108 109 110
}

(** Module under construction *)

type module_uc = {
  muc_theory : theory_uc;
  muc_decls  : pdecl list;
  muc_import : namespace list;
  muc_export : namespace list;
  muc_known  : known_map;
  muc_local  : Sid.t;
111
  muc_used   : Sid.t;
112 113 114 115 116 117 118 119 120
}

let empty_module n p = {
  muc_theory = create_theory ~path:p n;
  muc_decls  = [];
  muc_import = [empty_ns];
  muc_export = [empty_ns];
  muc_known  = Mid.empty;
  muc_local  = Sid.empty;
121
  muc_used   = Sid.empty;
122 123 124 125 126 127 128 129
}

let close_module uc =
  let th = close_theory uc.muc_theory in (* catches errors *)
  { mod_theory = th;
    mod_decls  = List.rev uc.muc_decls;
    mod_export = List.hd uc.muc_export;
    mod_known  = uc.muc_known;
130 131
    mod_local  = uc.muc_local;
    mod_used   = uc.muc_used; }
132

133
let get_theory uc = uc.muc_theory
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
let get_namespace uc = List.hd uc.muc_import
let get_known uc = uc.muc_known

let open_namespace uc = match uc.muc_import with
  | ns :: _ -> { uc with
      muc_theory = Theory.open_namespace uc.muc_theory;
      muc_import =       ns :: uc.muc_import;
      muc_export = empty_ns :: uc.muc_export; }
  | [] -> assert false

let close_namespace uc import s =
  let th = Theory.close_namespace uc.muc_theory import s in (* catches errors *)
  match uc.muc_import, uc.muc_export with
  | _ :: i1 :: sti, e0 :: e1 :: ste ->
      let i1 = if import then merge_ns false e0 i1 else i1 in
      let _  = if import then merge_ns true  e0 e1 else e1 in
      let i1 = match s with Some s -> add_ns false s e0 i1 | _ -> i1 in
      let e1 = match s with Some s -> add_ns true  s e0 e1 | _ -> e1 in
      { uc with
	  muc_theory = th;
	  muc_import = i1 :: sti;
	  muc_export = e1 :: ste; }
  | _ ->
      assert false


(** Use *)

let use_export uc m =
163 164 165 166 167 168 169 170 171 172
  let mth = m.mod_theory in
  let id = mth.th_name in
  let uc =
    if not (Sid.mem id uc.muc_used) then
      { uc with
          muc_known = merge_known uc.muc_known m.mod_known;
          muc_used  = Sid.add id uc.muc_used; }
    else
      uc
  in
173 174
  match uc.muc_import, uc.muc_export with
  | i0 :: sti, e0 :: ste -> { uc with
175
      muc_theory = Theory.use_export uc.muc_theory mth;
176
      muc_import = merge_ns false m.mod_export i0 :: sti;
177
      muc_export = merge_ns true  m.mod_export e0 :: ste; }
178
  | _ -> assert false
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

(** Logic decls *)

let add_to_theory f uc x = { uc with muc_theory = f uc.muc_theory x }

let add_decl = add_to_theory Theory.add_decl
let add_decl_with_tuples = add_to_theory Theory.add_decl_with_tuples
let add_ty_decl = add_to_theory Theory.add_ty_decl
let add_logic_decl = add_to_theory Theory.add_logic_decl
let add_ind_decl = add_to_theory Theory.add_ind_decl
let add_prop_decl uc k pr f =
  { uc with muc_theory = Theory.add_prop_decl uc.muc_theory k pr f }

let use_export_theory = add_to_theory Theory.use_export
let clone_export_theory uc th i =
  { uc with muc_theory = Theory.clone_export uc.muc_theory th i }
let add_meta uc m al =
  { uc with muc_theory = Theory.add_meta uc.muc_theory m al }

198 199 200
let create_module ?(path=[]) n =
  use_export_theory (empty_module n path) bool_theory

201 202
(** Program decls *)

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
let add_symbol add id v uc =
  match uc.muc_import, uc.muc_export with
  | i0 :: sti, e0 :: ste -> { uc with
      muc_import = add false id.id_string v i0 :: sti;
      muc_export = add true  id.id_string v e0 :: ste }
  | _ -> assert false

let add_type uc (its,def) =
  let add_ps uc {ps=ps} = add_symbol add_ps ps.p_name ps uc in
  let add_proj = option_fold add_ps in
  let add_constr uc (ps,pjl) = List.fold_left add_proj (add_ps uc ps) pjl in
  let uc = add_symbol add_it its.its_pure.ts_name its uc in
  match def with
    | ITabstract -> uc
    | ITalgebraic lfs -> List.fold_left add_constr uc lfs

let add_pdecl uc d =
  let uc =  { uc with
    muc_decls = d :: uc.muc_decls;
    muc_known = known_add_decl (Theory.get_known uc.muc_theory) uc.muc_known d;
    muc_local = Sid.union uc.muc_local d.pd_news }
  in
  match d.pd_node with
  | PDtype dl ->
      let uc = List.fold_left add_type uc dl in
228 229
      let projection = option_map (fun ps -> ps.ls) in
      let constructor (ps,pjl) = ps.ls, List.map projection pjl in
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
      let defn = function
        | ITabstract -> Decl.Tabstract
        | ITalgebraic cl -> Decl.Talgebraic (List.map constructor cl)
      in
      let dl = List.map (fun (its, d) -> its.its_pure, defn d) dl in
      add_to_theory Theory.add_ty_decl uc dl

let add_pdecl_with_tuples uc d =
  let ids = Mid.set_diff d.pd_syms uc.muc_known in
  let ids = Mid.set_diff ids (Theory.get_known uc.muc_theory) in
  let add id s = match is_ts_tuple_id id with
    | Some n -> Sint.add n s
    | None -> s in
  let ixs = Sid.fold add ids Sint.empty in
  let add n uc = use_export_theory uc (tuple_theory n) in
  add_pdecl (Sint.fold add ixs uc) d
246 247 248 249 250

(** Clone *)

let clone_export _uc _m _inst =
  assert false (*TODO*)