parser.mly 21.2 KB
Newer Older
1
2
/**************************************************************************/
/*                                                                        */
Jean-Christophe Filliâtre's avatar
headers    
Jean-Christophe Filliâtre committed
3
4
5
6
7
/*  Copyright (C) 2010-                                                   */
/*    Francois Bobot                                                      */
/*    Jean-Christophe Filliatre                                           */
/*    Johannes Kanig                                                      */
/*    Andrei Paskevich                                                    */
8
9
10
11
12
13
14
15
16
17
18
/*                                                                        */
/*  This software is free software; you can redistribute it and/or        */
/*  modify it under the terms of the GNU Library General Public           */
/*  License version 2.1, with the special exception on linking            */
/*  described in file LICENSE.                                            */
/*                                                                        */
/*  This software is distributed in the hope that it will be useful,      */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of        */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  */
/*                                                                        */
/**************************************************************************/
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32

%{

  open Ptree
  open Parsing

  let loc () = (symbol_start_pos (), symbol_end_pos ())
  let loc_i i = (rhs_start_pos i, rhs_end_pos i)
  let loc_ij i j = (rhs_start_pos i, rhs_end_pos j)

  let mk_ppl loc d = { pp_loc = loc; pp_desc = d }
  let mk_pp d = mk_ppl (loc ()) d
  let mk_pp_i i d = mk_ppl (loc_i i) d
		    
Andrei Paskevich's avatar
Andrei Paskevich committed
33
34
  let mk_pat p = { pat_loc = loc (); pat_desc = p }

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
35
36
37
38
39
40
  let infix_ppl loc a i b = mk_ppl loc (PPinfix (a, i, b))
  let infix_pp a i b = infix_ppl (loc ()) a i b

  let prefix_ppl loc p a = mk_ppl loc (PPprefix (p, a))
  let prefix_pp p a = prefix_ppl (loc ()) p a

41
42
43
44
  let infix s = "infix " ^ s
  let prefix s = "prefix " ^ s
  let postfix s = "postfix " ^ s

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
(***
  let with_loc loc d = { pdesc = d; ploc = loc }
  let locate d = with_loc (loc ()) d
  let locate_i i d = with_loc (loc_i i) d

  let rec_name = function Srec (x,_,_,_,_,_) -> x | _ -> assert false

  let join (b,_) (_,e) = (b,e)

  let rec app f = function
    | [] -> 
	assert false
    | [a] -> 
	Sapp (f, a)
    | a :: l -> 
	let loc = join f.ploc a.ploc in 
	app (with_loc loc (Sapp (f, a))) l

  let bin_op (loc_op,op) e1 e2 =
    let f = with_loc loc_op (Svar op) in
    let f_e1 = with_loc (join e1.ploc loc_op) (Sapp (f, e1)) in
    locate (Sapp (f_e1, e2))
      
  let un_op (loc_op,op) e =
    locate (app (with_loc loc_op (Svar op)) [e])

  let ptype_c_of_v v =
    { pc_result_name = Ident.result;
      pc_result_type = v;
      pc_effect = { pe_reads = []; pe_writes = []; pe_raises = [] };
      pc_pre = []; 
      pc_post = None }

  let list_of_some = function None -> [] | Some x -> [x]

  (*s ensures a postcondition for a function body *)

  let force_function_post ?(warn=false) e = match e.pdesc with
    | Spost _ -> 
	e
    | _ -> 
       if warn then 
	 Format.eprintf 
	   "%ano postcondition for this function; true inserted@\n"
	   Loc.report_position e.ploc; 
       let q = 
	 { pa_name = Anonymous; pa_value = mk_pp PPtrue; pa_loc = loc () }
       in
       { e with pdesc = Spost (e, (q, []), Transparent) }
***)
%}

/* Tokens */ 

99
%token <string> LIDENT UIDENT
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
100
%token <string> INTEGER
101
%token <string> OP0 OP1 OP2 OP3
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
102
103
104
105
%token <Ptree.real_constant> FLOAT
%token <string> STRING
%token ABSURD AMPAMP AND ARRAY ARROW AS ASSERT AT AXIOM 
%token BANG BAR BARBAR BEGIN 
106
%token BIGARROW CHECK CLONE COLON COLONEQUAL COMMA DO 
107
108
%token DONE DOT ELSE END EOF EQUAL
%token EXCEPTION EXISTS EXPORT EXTERNAL FALSE FOR FORALL FPI 
109
%token FUN GOAL
110
%token IF IMPORT IN INCLUDE INDUCTIVE INVARIANT
111
%token LEFTB LEFTBLEFTB LEFTPAR LEFTSQ LEMMA 
112
%token LET LOGIC LRARROW MATCH 
113
%token NAMESPACE NOT OF OR PARAMETER PROP 
114
%token QUOTE RAISE RAISES READS REC REF RETURNS RIGHTB RIGHTBRIGHTB
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
115
%token RIGHTPAR RIGHTSQ 
116
117
%token SEMICOLON 
%token THEN THEORY TRUE TRY TYPE UNDERSCORE
118
%token UNIT USE VARIANT VOID WHILE WITH WRITES
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

/* Precedences */

%nonassoc prec_recfun
%nonassoc prec_fun
%left LEFTB LEFTBLEFTB
%left prec_simple

%left COLON 

%left prec_letrec
%left IN

%right SEMICOLON

%left prec_no_else
%left ELSE

%right prec_named
%left COLONEQUAL
139
%right prec_quant
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
140
141
142
143
144
%right ARROW LRARROW
%right OR BARBAR
%right AND AMPAMP
%right NOT
%right prec_if
145
146
147
148
149
%left EQUAL OP0
%left OP1
%left OP2
%left OP3
%right unary_op
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
150
151
152
153
%left prec_app
%left prec_ident
%left LEFTSQ

154
155
156
%nonassoc prec_logics prec_types
%nonassoc LOGIC TYPE

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
157
158
159
160
161
162
163
164
165
/* Entry points */

%type <Ptree.lexpr> lexpr
%start lexpr
%type <Ptree.logic_file> logic_file
%start logic_file
%%

logic_file:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
166
167
| list1_theory EOF
   { $1 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
168
169
170
171
172
173
174
175
176
177
178
| EOF 
   { [] }
;

list1_decl:
| decl 
   { [$1] }
| decl list1_decl 
   { $1 :: $2 }
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
179
180
181
182
183
184
185
list0_decl:
| /* epsilon */
   { [] }
| list1_decl 
   { $1 }
;

186
ident:
187
188
| lident_string { { id = $1; id_loc = loc () } }
| UIDENT        { { id = $1; id_loc = loc () } }
189
190
;

191
lident:
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
| lident_string
    { { id = $1; id_loc = loc () } }
;

lident_string:
| LIDENT                        
    { $1 }
| LEFTPAR UNDERSCORE lident_op UNDERSCORE RIGHTPAR 
    { infix $3 }
| LEFTPAR lident_op UNDERSCORE RIGHTPAR 
    { prefix $2 }
/*
| LEFTPAR UNDERSCORE lident_op RIGHTPAR 
    { postfix $3 }
*/
207
208
;

209
210
211
212
213
214
lident_op:
| OP0   { $1 }
| OP2   { $1 }
| OP3   { $1 }
| EQUAL { "=" }
;
215

216
217
218
219
220
any_op:
| OP0   { $1 }
| OP2   { $1 }
| OP3   { $1 }
;
221

222
223
224
225
226
227
228
229
230
231
232
233
uident:
| UIDENT { { id = $1; id_loc = loc () } }
;

lqualid:
| lident             { Qident $1 }
| uqualid DOT lident { Qdot ($1, $3) }
;

uqualid:
| uident             { Qident $1 }
| uqualid DOT uident { Qdot ($1, $3) }
234
235
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
236
237
238
any_qualid:
| ident                { Qident $1 }
| any_qualid DOT ident { Qdot ($1, $3) }
239
240
;

241
qualid:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
242
243
| ident             { Qident $1 }
| uqualid DOT ident { Qdot ($1, $3) }
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
params:
| /* epsilon */                          { [] }
| LEFTPAR list1_param_sep_comma RIGHTPAR { $2 }
;

param:
| primitive_type              { None, $1 }
| lident COLON primitive_type { Some $1, $3 }
;

list1_param_sep_comma:
| param                             { [$1] }
| param COMMA list1_param_sep_comma { $1 :: $3 }
;

260
261
262
263
primitive_types:
| /* epsilon */                                   { [] }
| LEFTPAR list1_primitive_type_sep_comma RIGHTPAR { $2 }

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
logic_type_option:
| /* epsilon */        { None }
| COLON primitive_type { Some $2 }
;

logic_def_option:
| /* epsilon */ { None }
| EQUAL lexpr   { Some $2 }
;

logic_decl:
| LOGIC lident params logic_type_option logic_def_option
    { { ld_loc = loc ();
	ld_ident = $2; ld_params = $3; ld_type = $4; ld_def = $5; } }
;

list1_logic_decl:
| logic_decl                  %prec prec_logics { [$1] }
| logic_decl list1_logic_decl                   { $1 :: $2 }
;

type_decl:
| TYPE typedecl typedefn
  { let _, pl, id = $2 in
    { td_loc = loc (); td_ident = id; td_params = pl; td_def = $3 } }
;

list1_type_decl:
| type_decl                  %prec prec_types { [$1] }
| type_decl list1_type_decl                   { $1 :: $2 }
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
296
decl:
297
298
299
300
| list1_type_decl
   { TypeDecl (loc (), $1) }
| list1_logic_decl
   { Logic (loc (), $1) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
301
| AXIOM uident COLON lexpr
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
302
303
304
305
306
   { Prop (loc (), Kaxiom, $2, $4) }
| GOAL uident COLON lexpr
   { Prop (loc (), Kgoal, $2, $4) }
| LEMMA uident COLON lexpr
   { Prop (loc (), Klemma, $2, $4) }
307
308
| INDUCTIVE lident primitive_types inddefn
   { Inductive_def (loc (), $2, $3, $4) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
309
310
| CLONE use clone_subst
   { UseClone (loc (), $2, Some $3) }
311
| USE use
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
312
   { UseClone (loc (), $2, None) }
313
314
| NAMESPACE uident list0_decl END
   { Namespace (loc (), $2, $3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
315
316
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
317
318
319
320
321
322
323
324
list1_theory:
| theory 
   { [$1] }
| theory list1_theory 
   { $1 :: $2 }
;

theory:
325
| THEORY uident list0_decl END 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
326
   { { pt_loc = loc (); pt_name = $2; pt_decl = $3 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
327
328
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
329
typedecl:
330
| lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
331
    { (loc_i 1, [], $1) }
332
| type_var lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
333
    { (loc_i 2, [$1], $2) }
334
| LEFTPAR type_var COMMA list1_type_var_sep_comma RIGHTPAR lident
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
335
336
337
338
339
    { (loc_i 6, $2 :: $4, $6) }
;

typedefn:
| /* epsilon */
340
341
342
    { TDabstract }
| EQUAL primitive_type
    { TDalias $2 }
343
344
345
| EQUAL typecases
    { TDalgebraic $2 }
| EQUAL BAR typecases
346
    { TDalgebraic $3 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
347
348
349
350
351
352
353
354
;

typecases:
| typecase                { [$1] }
| typecase BAR typecases  { $1::$3 }
;

typecase:
355
| uident params { (loc_i 1,$1,$2) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
356
357
358
359
360
361
362
363
364
365
366
367
368
;

inddefn:
| /* epsilon */       { [] }
| EQUAL bar_ indcases { $3 }
;

indcases:
| indcase               { [$1] }
| indcase BAR indcases  { $1::$3 }
;

indcase:
369
| uident COLON lexpr { ($1,$3) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
370
371
372
373
;

primitive_type:
| type_var 
374
   { PPTtyvar $1 }
375
| lqualid
376
   { PPTtyapp ([], $1) }
377
| primitive_type lqualid
378
   { PPTtyapp ([$1], $2) }
379
| LEFTPAR primitive_type COMMA list1_primitive_type_sep_comma RIGHTPAR lqualid
380
   { PPTtyapp ($2 :: $4, $6) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
;

list1_primitive_type_sep_comma:
| primitive_type                                      { [$1] }
| primitive_type COMMA list1_primitive_type_sep_comma { $1 :: $3 }
;

lexpr:
| lexpr ARROW lexpr 
   { infix_pp $1 PPimplies $3 }
| lexpr LRARROW lexpr 
   { infix_pp $1 PPiff $3 }
| lexpr OR lexpr 
   { infix_pp $1 PPor $3 }
| lexpr AND lexpr 
   { infix_pp $1 PPand $3 }
| NOT lexpr 
   { prefix_pp PPnot $2 }
399
| lexpr EQUAL lexpr 
400
   { let id = { id = infix "="; id_loc = loc_i 2 } in
401
     mk_pp (PPapp (Qident id, [$1; $3])) }
402
403
| lexpr OP0 lexpr 
   { let id = { id = infix $2; id_loc = loc_i 2 } in
404
     mk_pp (PPapp (Qident id, [$1; $3])) }
405
406
| lexpr OP1 lexpr 
   { let id = { id = infix $2; id_loc = loc_i 2 } in
407
     mk_pp (PPapp (Qident id, [$1; $3])) }
408
409
| lexpr OP2 lexpr 
   { let id = { id = infix $2; id_loc = loc_i 2 } in
410
     mk_pp (PPapp (Qident id, [$1; $3])) }
411
412
| lexpr OP3 lexpr 
   { let id = { id = infix $2; id_loc = loc_i 2 } in
413
     mk_pp (PPapp (Qident id, [$1; $3])) }
414
415
416
417
418
419
420
421
| any_op lexpr %prec unary_op
   { let id = { id = prefix $1; id_loc = loc_i 2 } in
     mk_pp (PPapp (Qident id, [$2])) }
/*
| lexpr any_op %prec unary_op
   { let id = { id = postfix $2; id_loc = loc_i 2 } in
     mk_pp (PPapp (Qident id, [$1])) }
*/
422
| qualid
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
423
   { mk_pp (PPvar $1) }
424
| qualid LEFTPAR list1_lexpr_sep_comma RIGHTPAR
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
425
426
427
   { mk_pp (PPapp ($1, $3)) }
| IF lexpr THEN lexpr ELSE lexpr %prec prec_if 
   { mk_pp (PPif ($2, $4, $6)) }
428
429
430
431
| FORALL list1_uquant_sep_comma triggers DOT lexpr %prec prec_quant
   { mk_pp (PPquant (PPforall, $2, $3, $5)) }
| EXISTS list1_uquant_sep_comma triggers DOT lexpr %prec prec_quant
   { mk_pp (PPquant (PPexists, $2, $3, $5)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
432
| INTEGER
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
433
   { mk_pp (PPconst (Term.ConstInt $1)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
434
| FLOAT
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
435
   { mk_pp (PPconst (Term.ConstReal $1)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
436
437
438
439
440
441
| TRUE
   { mk_pp PPtrue }
| FALSE
   { mk_pp PPfalse }    
| LEFTPAR lexpr RIGHTPAR
   { $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
442
443
| STRING lexpr %prec prec_named
   { mk_pp (PPnamed ($1, $2)) }
444
| LET lident EQUAL lexpr IN lexpr 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
445
446
447
   { mk_pp (PPlet ($2, $4, $6)) }
| MATCH lexpr WITH bar_ match_cases END
   { mk_pp (PPmatch ($2, $5)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
448
449
| lexpr COLON primitive_type
   { mk_pp (PPcast ($1, $3)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
450
451
;

452
453
454
455
456
457
458
list1_uquant_sep_comma:
| uquant                              { [$1] }
| uquant COMMA list1_uquant_sep_comma { $1::$3 }

uquant:
| list1_lident_sep_comma COLON primitive_type { $1,$3 }

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
459
460
461
462
463
464
465
466
467
match_cases:
| match_case                  { [$1] }
| match_case BAR match_cases  { $1::$3 }
;

match_case:
| pattern ARROW lexpr { ($1,$3) }
;

Andrei Paskevich's avatar
Andrei Paskevich committed
468
469
470
471
list1_pat_sep_comma:
| pattern                           { [$1] }
| pattern COMMA list1_pat_sep_comma { $1::$3 }

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
472
pattern:
Andrei Paskevich's avatar
Andrei Paskevich committed
473
474
475
476
477
| UNDERSCORE                                    { mk_pat (PPpwild) }
| lident                                        { mk_pat (PPpvar $1) }
| uqualid                                       { mk_pat (PPpapp ($1, [])) }
| uqualid LEFTPAR list1_pat_sep_comma RIGHTPAR  { mk_pat (PPpapp ($1, $3)) }
| pattern AS lident                             { mk_pat (PPpas ($1,$3)) }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
;

triggers:
| /* epsilon */                         { [] }
| LEFTSQ list1_trigger_sep_bar RIGHTSQ  { $2 }
;

list1_trigger_sep_bar:
| trigger                           { [$1] }
| trigger BAR list1_trigger_sep_bar { $1 :: $3 }
;

trigger:
  list1_lexpr_sep_comma { $1 }
;

list1_lexpr_sep_comma:
| lexpr                             { [$1] }
| lexpr COMMA list1_lexpr_sep_comma { $1 :: $3 }
;

type_var:
| QUOTE ident { $2 }
;

list1_type_var_sep_comma:
| type_var                                { [$1] }
| type_var COMMA list1_type_var_sep_comma { $1 :: $3 }
;

bar_:
| /* epsilon */ { () }
| BAR           { () }
;

513
514
515
516
517
list1_lident_sep_comma:
| lident                              { [$1] }
| lident COMMA list1_lident_sep_comma { $1 :: $3 }
;

518
use:
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
519
| imp_exp any_qualid              
520
    { { use_theory = $2; use_as = None; use_imp_exp = $1 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
521
522
| imp_exp any_qualid AS uident
    { { use_theory = $2; use_as = Some $4; use_imp_exp = $1 } }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
523
524
;

525
526
527
528
imp_exp:
| IMPORT        { Import }
| EXPORT        { Export }
| /* epsilon */ { Nothing }
529
530
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
531
clone_subst:
532
533
| /* epsilon */          { [] } 
| WITH list1_comma_subst { $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
534
535
536
;

list1_comma_subst:
537
538
| subst                         { [$1] }
| subst COMMA list1_comma_subst { $1 :: $3 } 
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
539
540
541
;

subst:
542
543
544
545
| TYPE  qualid EQUAL qualid { CStsym ($2, $4) }
| LOGIC qualid EQUAL qualid { CSlsym ($2, $4) }
| LEMMA qualid              { CSlemma $2 }
| GOAL  qualid              { CSgoal  $2 }
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
546
547
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
548
549
/******* programs **************************************************

550
551
552
553
554
555
qualid_ident:
| IDENT          { $1, None }
| IDENT AT       { $1, Some "" }
| IDENT AT IDENT { $1, Some $3 }
;

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
list0_ident_sep_comma:
| /* epsilon * /         { [] }
| list1_ident_sep_comma { $1 }
;

decl:
| INCLUDE STRING
   { Include (loc_i 2,$2) }
| LET ident EQUAL expr
   { Program (loc_i 2,$2, $4) }
| LET ident binders EQUAL list0_bracket_assertion expr
   { Program (loc_i 2,$2, locate (Slam ($3, $5, force_function_post $6))) }
| LET REC recfun
   { let (loc,p) = $3 in Program (loc,rec_name p, locate p) }
| EXCEPTION ident
   { Exception (loc (), $2, None) }
| EXCEPTION ident OF primitive_type
   { Exception (loc (), $2, Some $4) }
| external_ PARAMETER list1_ident_sep_comma COLON type_v
   { Parameter (loc_i 3, $1, $3, $5) }

type_v:
| simple_type_v ARROW type_c
   { PVarrow ([Ident.anonymous, $1], $3) }
| ident COLON simple_type_v ARROW type_c
   { PVarrow ([($1, $3)], $5) }
| simple_type_v
   { $1 }
;

simple_type_v:
| primitive_type ARRAY    { PVref (PPTexternal ([$1], Ident.farray, loc_i 2)) }
| primitive_type REF      { PVref $1 }
| primitive_type          { PVpure $1 }
| LEFTPAR type_v RIGHTPAR { $2 }
;

type_c:
| LEFTB opt_assertion RIGHTB result effects LEFTB opt_post_condition RIGHTB
   { let id,v = $4 in
     { pc_result_name = id; pc_result_type = v;
       pc_effect = $5; pc_pre = list_of_some $2; pc_post = $7 } }
| type_v
   { ptype_c_of_v $1 }
;

result:
| RETURNS ident COLON type_v { $2, $4 }
| type_v                     { Ident.result, $1 }
;

effects:
| opt_reads opt_writes opt_raises
    { { pe_reads = $1; pe_writes = $2; pe_raises = $3 } }
;

opt_reads:
| /* epsilon * /               { [] }
| READS list0_ident_sep_comma { $2 }
;

opt_writes:
| /* epsilon * /                { [] }
| WRITES list0_ident_sep_comma { $2 }
;

opt_raises:
| /* epsilon * /                { [] }
| RAISES list0_ident_sep_comma { $2 }
;

opt_assertion:
| /* epsilon * /  { None }
| assertion      { Some $1 }
;

assertion:
| lexpr          
    { { pa_name = Anonymous; pa_value = $1; pa_loc = loc () } }
| lexpr AS ident 
    { { pa_name = Name $3; pa_value = $1; pa_loc = loc () } }
;

opt_post_condition:
| /* epsilon * /  { None }
| post_condition { Some $1 }
;

post_condition:
| assertion 
   { $1, [] }
| assertion BAR list1_exn_condition_sep_bar
   { $1, $3 }
| BAR list1_exn_condition_sep_bar
   { Format.eprintf "%awarning: no postcondition; false inserted@\n" 
       Loc.report_position (loc ());
     (* if Options.werror then exit 1; *)
     ({ pa_name = Anonymous; pa_value = mk_pp PPfalse; pa_loc = loc () }, $2) }
;

bracket_assertion:
| LEFTB assertion RIGHTB { $2 }
;

list1_bracket_assertion:
| bracket_assertion                         { [$1] }
| bracket_assertion list1_bracket_assertion { $1 :: $2 }
;

list0_bracket_assertion:
| /* epsilon * /           { [] }
| LEFTB RIGHTB            { [] }
| list1_bracket_assertion { $1 }
;

list1_exn_condition_sep_bar:
| exn_condition                                 { [$1] }
| exn_condition BAR list1_exn_condition_sep_bar { $1 :: $3 }
;

exn_condition:
| ident BIGARROW assertion { $1,$3 }
;

expr:
| simple_expr %prec prec_simple 
   { $1 }
| ident COLONEQUAL expr
   { locate 
       (Sapp (locate (Sapp (locate (Svar Ident.ref_set), 
			    locate_i 1 (Svar $1))),
	      $3)) }
| ident LEFTSQ expr RIGHTSQ COLONEQUAL expr
   { locate 
       (Sapp (locate 
		(Sapp (locate 
			 (Sapp (locate (Svar Ident.array_set), 
				locate_i 1 (Svar $1))),
			 $3)),
		$6)) }
| IF expr THEN expr ELSE expr
   { locate (Sif ($2, $4, $6)) }
| IF expr THEN expr %prec prec_no_else
   { locate (Sif ($2, $4, locate (Sconst ConstUnit))) }
| WHILE expr DO invariant_variant expr DONE
   { (* syntactic suget for
        try loop { invariant variant } if b then e else raise Exit
        with Exit -> void end *)
     let inv,var = $4 in
     locate 
       (Stry
	  (locate 
	     (Sloop (inv, var, 
		     locate 
		       (Sif ($2, $5,
			     locate (Sraise (exit_exn, None, None)))))),
	     [((exit_exn, None), locate (Sconst ConstUnit))])) }
| IDENT COLON expr
   { locate (Slabel ($1, $3)) }
| LET ident EQUAL expr IN expr
   { locate (Sletin ($2, $4, $6)) }
| LET ident EQUAL REF expr IN expr
   { locate (Sletref ($2, $5, $7)) }
| FUN binders ARROW list0_bracket_assertion expr %prec prec_fun
   { locate (Slam ($2, $4, force_function_post $5)) }
| LET ident binders EQUAL list0_bracket_assertion expr IN expr
   { let b =  force_function_post ~warn:true $6 in
     locate (Sletin ($2, locate (Slam ($3, $5, b)), $8)) }
| LET REC recfun %prec prec_letrec
   { let _loc,p = $3 in locate p }
| LET REC recfun IN expr
   { let _loc,p = $3 in locate (Sletin (rec_name p, locate p, $5)) }
| RAISE ident opt_cast
   { locate (Sraise ($2, None, $3)) }
| RAISE LEFTPAR ident expr RIGHTPAR opt_cast
   { locate (Sraise ($3, Some $4 , $6)) }
| TRY expr WITH bar_ list1_handler_sep_bar END
   { locate (Stry ($2, $5)) }
| ABSURD opt_cast
   { locate (Sabsurd $2) }
| simple_expr list1_simple_expr %prec prec_app
   { locate (app $1 $2) }
| expr BARBAR expr
   { locate (Slazy_or ($1, $3))
     (* let ptrue = locate (Sconst (ConstBool true)) in
     locate (Sif ($1, ptrue, $3)) *) }
| expr AMPAMP expr
   { locate (Slazy_and ($1, $3))
     (* let pf = locate (Sconst (ConstBool false)) in
     locate (Sif ($1, $3, pf)) *) }
| NOT expr
   { locate (Snot $2)
     (* let pf = locate (Sconst (ConstBool false)) in
     let pt = locate (Sconst (ConstBool true)) in
     locate (Sif ($2, pf, pt)) *) }
| expr relation_id expr %prec prec_relation
   { bin_op $2 $1 $3 }
| expr PLUS expr
   { bin_op (loc_i 2, Ident.t_add) $1 $3 }
| expr MINUS expr
   { bin_op (loc_i 2, Ident.t_sub) $1 $3 }
| expr TIMES expr
   { bin_op (loc_i 2, Ident.t_mul) $1 $3 }
| expr SLASH expr
   { bin_op (loc_i 2, Ident.t_div) $1 $3 }
| expr PERCENT expr
   { bin_op (loc_i 2, Ident.t_mod_int) $1 $3 }
| MINUS expr %prec uminus
   { un_op (loc_i 1, Ident.t_neg) $2 }
| expr SEMICOLON expr
   { locate (Sseq ($1, $3)) }
| ASSERT list1_bracket_assertion SEMICOLON expr 
   { locate (Sassert (`ASSERT,$2, $4)) }
| CHECK list1_bracket_assertion SEMICOLON expr 
   { locate (Sassert (`CHECK,$2, $4)) }
| expr LEFTB post_condition RIGHTB
   { locate (Spost ($1, $3, Transparent)) }
| expr LEFTBLEFTB post_condition RIGHTBRIGHTB
   { locate (Spost ($1, $3, Opaque)) }
;

simple_expr:
| ident %prec prec_ident
   { locate (Svar $1) }
| INTEGER
   { locate (Sconst (ConstInt $1)) }
| FLOAT
   { let f = $1 in locate (Sconst (ConstFloat f)) }
| VOID
   { locate (Sconst ConstUnit) }
| TRUE
   { locate (Sconst (ConstBool true)) }
| FALSE
   { locate (Sconst (ConstBool false)) }
| BANG ident
   { locate (Sderef $2) }
| ident LEFTSQ expr RIGHTSQ
   { locate 
       (Sapp (locate (Sapp (locate (Svar Ident.array_get), 
			    locate_i 1 (Svar $1))),
	      $3)) }
| LEFTSQ type_c RIGHTSQ
   { locate (Sany $2) }
| LEFTPAR expr RIGHTPAR
   { $2 }
| BEGIN expr END
   { $2 }
;

relation_id:
| LT    { loc (), Ident.t_lt }
| LE    { loc (), Ident.t_le }
| GT    { loc (), Ident.t_gt }
| GE    { loc (), Ident.t_ge }
| EQUAL { loc (), Ident.t_eq }
| NOTEQ { loc (), Ident.t_neq }
;

list1_simple_expr:
| simple_expr %prec prec_simple { [$1] }
| simple_expr list1_simple_expr { $1 :: $2 }
;

list1_handler_sep_bar:
| handler                           { [$1] }
| handler BAR list1_handler_sep_bar { $1 :: $3 }
;

handler:
| ident ARROW expr       { (($1, None), $3) }
| ident ident ARROW expr { (($1, Some $2), $4) }
;

opt_cast:
| /* epsilon * / { None }
| COLON type_v  { Some $2 }
;

invariant_variant:
| /* epsilon * / { None, None }
| LEFTB opt_invariant RIGHTB { $2, None }
| LEFTB opt_invariant VARIANT variant RIGHTB { $2, Some $4 }
;

opt_invariant:
| /* epsilon * /       { None }
| INVARIANT assertion { Some $2 }
;

recfun:
| ident binders COLON type_v opt_variant EQUAL 
  list0_bracket_assertion expr %prec prec_recfun
   { (loc_i 1),Srec ($1, $2, $4, $5, $7, force_function_post $8) }
;

opt_variant:
| LEFTB VARIANT variant RIGHTB { Some $3 } 
| /* epsilon * /                { None }
;

variant:
| lexpr FOR ident { ($1, $3) }
| lexpr           { ($1, Ident.t_zwf_zero) }
;

binders:
| list1_binder { List.flatten $1 }
;

list1_binder:
| binder              { [$1] }
| binder list1_binder { $1 :: $2 }
;

binder:
| LEFTPAR RIGHTPAR
   { [Ident.anonymous, PVpure PPTunit] }
| LEFTPAR list1_ident_sep_comma COLON type_v RIGHTPAR 
   { List.map (fun s -> (s, $4)) $2 }
;

****/