apply.ml 15.4 KB
Newer Older
1 2 3
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
Guillaume Melquiond's avatar
Guillaume Melquiond committed
4
(*  Copyright 2010-2018   --   Inria - CNRS - Paris-Sud University  *)
5 6 7 8 9 10 11
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
(*                                                                  *)
(********************************************************************)

12 13 14 15 16 17 18 19 20 21
open Trans
open Term
open Decl
open Theory
open Task
open Args_wrapper
open Reduction_engine
open Generic_arg_trans_utils

(** This file contains transformations with arguments that acts on specific
22
    declarations to refine them (rewrite, replace, apply, unfold...) *)
23 24 25 26 27 28 29 30 31 32 33 34 35 36


let debug_matching = Debug.register_info_flag "print_match"
  ~desc:"Print@ terms@ that@ were@ not@ successfully@ matched@ by@ ITP@ tactic@ apply."

(* Do as intros: introduce all premises of hypothesis pr and return a triple
   (goal, list_premises, binded variables) *)
let intros f =
  let rec intros_aux lp lv f =
    match f.t_node with
    | Tbinop (Timplies, f1, f2) ->
        intros_aux (f1 :: lp) lv f2
    | Tquant (Tforall, fq) ->
        let vsl, _, fs = t_open_quant fq in
Sylvain Dailler's avatar
Sylvain Dailler committed
37
        intros_aux lp (lv @ vsl) fs
38
    | _ -> (lp, lv, f) in
Sylvain Dailler's avatar
Sylvain Dailler committed
39
  intros_aux [] [] f
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

let term_decl d =
  match d.td_node with
  | Decl ({d_node = Dprop (_pk, _pr, t)}) -> t
  | _ -> raise (Arg_trans "term_decl")

let pr_prsymbol pr =
  match pr with
  | Decl {d_node = Dprop (_pk, pr, _t)} -> Some pr
  | _ -> None

(* Looks for the hypothesis name and return it. If not found return None *)
let find_hypothesis (name:Ident.ident) task =
  let ndecl = ref None in
  let _ = task_iter (fun x -> if (
    match (pr_prsymbol x.td_node) with
    | None -> false
    | Some pr -> Ident.id_equal pr.pr_name name) then ndecl := Some x) task in
  !ndecl

Sylvain Dailler's avatar
Sylvain Dailler committed
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
(* [with_terms subst_ty subst lv wt]: Takes the list of variables in lv that are
   not part of the substitution and try to match them with the list of values
   from wt (ordered). *)
(* TODO we could use something simpler than first_order_matching here. *)
let with_terms ~trans_name subst_ty subst lv withed_terms =
  Debug.dprintf debug_matching "Calling with_terms@.";
  (* Get the list of variables of lv that are not in subst. *)
  let lv, slv = List.fold_left (fun (acc, accs) v ->
    match (Mvs.find v subst) with
    | _ -> acc, accs
    | exception Not_found -> t_var v :: acc, Svs.add v accs) ([], Svs.empty) lv
  in
  let lv = List.rev lv in

  (* Length checking for nice errors *)
  let diff = Svs.cardinal slv - List.length withed_terms in
  match diff with
  | _ when diff < 0 ->
      Debug.dprintf debug_matching "Too many withed terms@.";
      raise (Arg_trans (trans_name ^ ": the last " ^
Sylvain Dailler's avatar
Sylvain Dailler committed
80
                        string_of_int (-diff)
Sylvain Dailler's avatar
Sylvain Dailler committed
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
                        ^ " terms in with are useless"))
  | _ when diff > 0 ->
      Debug.dprintf debug_matching "Not enough withed terms@.";
      raise (Arg_trans (trans_name ^ ": there are " ^
                        string_of_int diff
                        ^ " terms missing"))
  | _ (* when diff = 0 *) ->
      let new_subst_ty, new_subst =
        try first_order_matching slv lv withed_terms with
        | Reduction_engine.NoMatch (Some (t1, t2)) ->
            Debug.dprintf debug_matching "Term %a and %a can not be matched. Failure in matching@."
                Pretty.print_term t1 Pretty.print_term t2;
            raise (Arg_trans_term (trans_name, t1, t2))
        | Reduction_engine.NoMatchpat (Some (p1, p2)) ->
            Debug.dprintf debug_matching "Term %a and %a can not be matched. Failure in matching@."
              Pretty.print_pat p1 Pretty.print_pat p2;
            raise (Arg_trans_pattern (trans_name, p1, p2))
        | Reduction_engine.NoMatch None ->
            Debug.dprintf debug_matching "with_terms: No match@.";
            raise (Arg_trans trans_name)
      in
      let subst_ty = Ty.Mtv.union
          (fun _x y z ->
            if Ty.ty_equal y z then
              Some y
            else
              raise (Arg_trans_type (trans_name ^ ": ", y, z)))
          subst_ty new_subst_ty
      in
      let subst =
        Mvs.union (fun _x y z ->
          if Term.t_equal_nt_nl y z then
            Some y
          else
            raise (Arg_trans_term (trans_name ^ ": ", y, z)))
          subst new_subst
      in
      subst_ty, subst

(* This function first try to match left_term and right_term with a substitution
   on lv/slv. It then tries to fill the holes with the list of withed_terms.
   trans_name is used for nice error messages. Errors are returned when the size
   of withed_terms is incorrect.
*)
(* TODO Having both slv and lv is redundant but we need both an Svs and the
   order of elements: to be improved.
*)
let matching_with_terms ~trans_name slv lv left_term right_term withed_terms =
  let (subst_ty, subst) =
    try first_order_matching slv [left_term] [right_term] with
    | Reduction_engine.NoMatch (Some (t1, t2)) ->
      Debug.dprintf debug_matching
        "Term %a and %a can not be matched. Failure in matching@."
        Pretty.print_term t1 Pretty.print_term t2;
      raise (Arg_trans_term (trans_name, t1, t2))
    | Reduction_engine.NoMatchpat (Some (p1, p2)) ->
      Debug.dprintf debug_matching
        "Term %a and %a can not be matched. Failure in matching@."
        Pretty.print_pat p1 Pretty.print_pat p2;
      raise (Arg_trans_pattern (trans_name, p1, p2))
    | Reduction_engine.NoMatch None -> raise (Arg_trans trans_name)
  in
  let subst_ty, subst =
    let withed_terms = match withed_terms with None -> [] | Some l -> l in
    with_terms ~trans_name subst_ty subst lv withed_terms
  in
  subst_ty, subst

149 150 151 152 153 154 155 156 157
(* Apply:
   1) takes the hypothesis and introduce parts of it to keep only the last
      element of the implication. It gathers the premises and variables in a
      list.
   2) try to find a good substitution for the list of variables so that last
      element of implication is equal to the goal.
   3) generate new goals corresponding to premises with variables instantiated
      with values found in 2).
 *)
Sylvain Dailler's avatar
Sylvain Dailler committed
158
let apply pr withed_terms : Task.task Trans.tlist = Trans.store (fun task ->
159 160 161 162
  let name = pr.pr_name in
  let g, task = Task.task_separate_goal task in
  let g = term_decl g in
  let d = find_hypothesis name task in
163
  if d = None then raise (Arg_error "apply");
164 165 166
  let d = Opt.get d in
  let t = term_decl d in
  let (lp, lv, nt) = intros t in
Sylvain Dailler's avatar
Sylvain Dailler committed
167 168 169 170 171 172 173 174 175 176 177
  let slv = List.fold_left (fun acc v -> Svs.add v acc) Svs.empty lv in
  match matching_with_terms ~trans_name:"apply" slv lv nt g withed_terms with
  | exception e -> raise e
  | subst_ty, subst ->
      let inst_nt = t_ty_subst subst_ty subst nt in
      if (Term.t_equal_nt_nl inst_nt g) then
        let nlp = List.map (t_ty_subst subst_ty subst) lp in
        List.map (fun ng -> Task.add_decl task
              (create_prop_decl Pgoal (create_prsymbol (gen_ident "G")) ng)) nlp
      else
        raise (Arg_trans_term ("apply", inst_nt, g)))
178 179 180 181 182 183 184 185 186 187

let replace rev f1 f2 t =
  match rev with
  | true -> replace_in_term f1 f2 t
  | false -> replace_in_term f2 f1 t

(* - If f1 unifiable to t with substitution s then return s.f2 and replace every
     occurences of s.f1 with s.f2 in the rest of the term
   - Else call recursively on subterms of t *)
(* If a substitution s is found then new premises are computed as e -> s.e *)
Sylvain Dailler's avatar
Sylvain Dailler committed
188
let replace_subst lp lv f1 f2 withed_terms t =
189 190 191 192
  (* is_replced is common to the whole execution of replace_subst. Once an
     occurence is found, it changes to Some (s) so that only one instanciation
     is rewrritten during execution *)

Sylvain Dailler's avatar
Sylvain Dailler committed
193 194 195 196 197 198 199 200 201 202 203 204
  (* first_order_matching requires an Svs but we still need the order in
     with_terms. *)
  let slv = List.fold_left (fun acc v -> Svs.add v acc) Svs.empty lv in

  let rec replace is_replaced f1 f2 t : _ * Term.term =
    match is_replaced with
    | Some(subst_ty,subst) ->
        is_replaced, replace_in_term (t_ty_subst subst_ty subst f1) (t_ty_subst subst_ty subst f2) t
    | None ->
      begin
        (* Catch any error from first_order_matching or with_terms. *)
        match matching_with_terms ~trans_name:"rewrite" slv lv f1 t (Some withed_terms) with
Sylvain Dailler's avatar
Sylvain Dailler committed
205 206
        | exception _e ->
            Term.t_map_fold
Sylvain Dailler's avatar
Sylvain Dailler committed
207 208 209 210 211 212 213 214 215 216 217 218 219
                (fun is_replaced t -> replace is_replaced f1 f2 t)
                is_replaced t
        | subst_ty, subst ->
              let sf1 = t_ty_subst subst_ty subst f1 in
              if (Term.t_equal_nt_nl sf1 t) then
                Some (subst_ty, subst), t_ty_subst subst_ty subst f2
              else
                t_map_fold (fun is_replaced t -> replace is_replaced f1 f2 t)
                  is_replaced t
      end
  in

  let is_replaced, t =
220
    replace None f1 f2 t in
Sylvain Dailler's avatar
Sylvain Dailler committed
221
  match is_replaced with
Sylvain Dailler's avatar
Sylvain Dailler committed
222
  | None -> raise (Arg_trans "rewrite: no term matching the given pattern")
223
  | Some(subst_ty,subst) ->
Sylvain Dailler's avatar
Sylvain Dailler committed
224
      (List.map (t_ty_subst subst_ty subst) lp, t)
225

Sylvain Dailler's avatar
Sylvain Dailler committed
226
let rewrite_in rev with_terms h h1 =
227 228
  let found_eq =
    (* Used to find the equality we are rewriting on *)
Sylvain Dailler's avatar
Sylvain Dailler committed
229 230
    (* TODO here should fold with a boolean stating if we found equality yet to
       not go through all possible hypotheses *)
231
    Trans.fold_decl (fun d acc ->
232 233 234 235 236 237 238
      match d.d_node with
      | Dprop (Paxiom, pr, t) when Ident.id_equal pr.pr_name h.pr_name ->
          let lp, lv, f = intros t in
          let t1, t2 = (match f.t_node with
          | Tapp (ls, [t1; t2]) when ls_equal ls ps_equ ->
              (* Support to rewrite from the right *)
              if rev then (t1, t2) else (t2, t1)
239 240 241
          | Tbinop (Tiff, t1, t2) ->
              (* Support to rewrite from the right *)
              if rev then (t1, t2) else (t2, t1)
242 243 244 245 246 247
          | _ -> raise (Arg_bad_hypothesis ("rewrite", f))) in
          Some (lp, lv, t1, t2)
      | _ -> acc) None in
  (* Return instantiated premises and the hypothesis correctly rewritten *)
  let lp_new found_eq =
    match found_eq with
248
    | None -> raise (Arg_error "rewrite")
249
    | Some (lp, lv, t1, t2) ->
250
      Trans.fold_decl (fun d acc ->
251 252 253 254
        match d.d_node with
        | Dprop (p, pr, t)
            when (Ident.id_equal pr.pr_name h1.pr_name &&
                 (p = Paxiom || p = Pgoal)) ->
Sylvain Dailler's avatar
Sylvain Dailler committed
255
          let lp, new_term = replace_subst lp lv t1 t2 with_terms t in
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
            Some (lp, create_prop_decl p pr new_term)
        | _ -> acc) None in
  (* Pass the premises as new goals. Replace the former toberewritten
     hypothesis to the new rewritten one *)
  let recreate_tasks lp_new =
    match lp_new with
    | None -> raise (Arg_trans "recreate_tasks")
    | Some (lp, new_term) ->
      let trans_rewriting =
        Trans.decl (fun d -> match d.d_node with
        | Dprop (p, pr, _t)
            when (Ident.id_equal pr.pr_name h1.pr_name &&
                 (p = Paxiom || p = Pgoal)) ->
          [new_term]
        | _ -> [d]) None in
      let list_par =
        List.map
          (fun e ->
            Trans.decl (fun d -> match d.d_node with
            | Dprop (p, pr, _t)
              when (Ident.id_equal pr.pr_name h1.pr_name &&
                    p = Paxiom) ->
                [d]
            | Dprop (Pgoal, _, _) ->
                [create_prop_decl Pgoal (Decl.create_prsymbol (gen_ident "G")) e]
            | _ -> [d] )
          None) lp in
      Trans.par (trans_rewriting :: list_par) in

  (* Composing previous functions *)
  Trans.bind (Trans.bind found_eq lp_new) recreate_tasks

let find_target_prop h : prsymbol trans =
  Trans.store (fun task ->
               match h with
                 | Some pr -> pr
                 | None -> Task.task_goal task)

Sylvain Dailler's avatar
Sylvain Dailler committed
294 295 296 297 298 299 300
let rewrite with_terms rev h h1 =
  let with_terms =
    match with_terms with
    | None -> []
    | Some l -> l
  in
  Trans.bind (find_target_prop h1) (rewrite_in (not rev) with_terms h)
301

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
(* This function is used to detect when we found the hypothesis/goal we want
   to replace/unfold into. *)
let detect_prop pr k h =
  match h with
  | None -> k = Pgoal
  | Some h -> Ident.id_equal pr.pr_name h.pr_name && (k = Paxiom || k = Pgoal)

let detect_prop_list pr k hl =
  match hl with
  | None -> k = Pgoal
  | Some [] -> (* Should not be able to parse the empty list *)
      raise (Arg_trans "replace")
  | Some hl ->
      ((List.exists (fun h -> Ident.id_equal pr.pr_name h.pr_name) hl)
         && (k = Paxiom || k = Pgoal))

(* Replace occurences of t1 with t2 in h. When h is None, the default is to
   replace in the goal.
*)
let replace t1 t2 hl =
322 323 324 325 326 327 328 329
  if not (Ty.ty_equal (t_type t1) (t_type t2)) then
    raise (Arg_trans_term ("replace", t1, t2))
  else
    (* Create a new goal for equality of the two terms *)
    let g = Decl.create_prop_decl Decl.Pgoal (create_prsymbol (gen_ident "G")) (t_app_infer ps_equ [t1; t2]) in
    let ng = Trans.goal (fun _ _ -> [g]) in
    let g = Trans.decl (fun d ->
      match d.d_node with
330
      | Dprop (p, pr, t) when detect_prop_list pr p hl ->
331 332 333 334
          [create_prop_decl p pr (replace true t1 t2 t)]
      | _ -> [d]) None in
    Trans.par [g; ng]

335

336 337 338 339
let t_replace_app unf ls_defn t =
  let (vl, tls) = ls_defn in
  match t.t_node with
  | Tapp (ls, tl) when ls_equal unf ls ->
340 341 342 343 344 345 346 347
     let add (mt,mv) x y =
       Ty.ty_match mt x.vs_ty (t_type y), Mvs.add x y mv
     in
     let mtv,mvs =
       List.fold_left2 add (Ty.Mtv.empty,Mvs.empty) vl tl
     in
     let mtv = Ty.oty_match mtv tls.t_ty t.t_ty in
     t_ty_subst mtv mvs tls
348 349 350 351 352
  | _ -> t

let rec t_ls_replace ls ls_defn t =
  t_replace_app ls ls_defn (t_map (t_ls_replace ls ls_defn) t)

353
let unfold unf hl =
354 355 356 357 358 359 360 361
  let r = ref None in
  Trans.decl
    (fun d ->
      match d.d_node with
        (* Do not work on mutually recursive functions *)
      | Dlogic [(ls, ls_defn)] when ls_equal ls unf ->
          r := Some (open_ls_defn ls_defn);
          [d]
362
      | Dprop (k, pr, t) when detect_prop_list pr k hl ->
363 364 365 366 367 368 369 370 371 372
        begin
          match !r with
          | None -> [d]
          | Some ls_defn ->
              let t = t_ls_replace unf ls_defn t in
              let new_decl = create_prop_decl k pr t in
              [new_decl]
        end
      | _ -> [d]) None

373 374

let () = wrap_and_register ~desc:"sort declarations"
375 376
                           "sort"
                           (Ttrans) sort
377

378
let () = wrap_and_register ~desc:"unfold ls [in] pr: unfold logic symbol ls in list of hypothesis pr. The argument in is optional: by default unfold in the goal." (* TODO *)
379 380 381
                           "unfold"
                           (Tlsymbol (Topt ("in", Tprlist Ttrans))) unfold

382

383
let () = wrap_and_register
384 385 386
           ~desc:"replace <term1> <term2> [in] <name list> replaces occcurences of term1 by term2 in prop name. If no list is given, replace in the goal."
           "replace"
           (Tterm (Tterm (Topt ("in", Tprlist Ttrans_l)))) replace
387 388

let _ = wrap_and_register
389 390
          ~desc:"rewrite [<-] <name> [in] <name2> [with] <list term> rewrites equality defined in name into name2 using exactly all terms of the list as instance for what cannot be deduced directly" "rewrite"
          (Toptbool ("<-",(Tprsymbol (Topt ("in", Tprsymbol (Topt ("with", Ttermlist Ttrans_l))))))) (fun rev h h1opt term_list -> rewrite term_list rev h h1opt)
Sylvain Dailler's avatar
Sylvain Dailler committed
391 392

let () = wrap_and_register
393 394 395
           ~desc:"apply <prop> [with] <list term> applies prop to the goal and \
                  uses the list of terms to instantiate the variables that are not found." "apply"
           (Tprsymbol (Topt ("with", Ttermlist Ttrans_l))) (fun x y -> apply x y)