mlw_wp.ml 76.8 KB
Newer Older
Andrei Paskevich's avatar
Andrei Paskevich committed
1 2 3
(********************************************************************)
(*                                                                  *)
(*  The Why3 Verification Platform   /   The Why3 Development Team  *)
Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
4
(*  Copyright 2010-2014   --   INRIA - CNRS - Paris-Sud University  *)
Andrei Paskevich's avatar
Andrei Paskevich committed
5 6 7 8 9 10
(*                                                                  *)
(*  This software is distributed under the terms of the GNU Lesser  *)
(*  General Public License version 2.1, with the special exception  *)
(*  on linking described in file LICENSE.                           *)
(*                                                                  *)
(********************************************************************)
Andrei Paskevich's avatar
Andrei Paskevich committed
11

12
open Stdlib
Andrei Paskevich's avatar
Andrei Paskevich committed
13 14 15
open Ident
open Ty
open Term
16
open Decl
Andrei Paskevich's avatar
Andrei Paskevich committed
17 18 19 20 21
open Theory
open Mlw_ty
open Mlw_ty.T
open Mlw_expr

22
let debug = Debug.register_info_flag "whyml_wp"
Andrei Paskevich's avatar
Andrei Paskevich committed
23
  ~desc:"Print@ details@ of@ verification@ conditions@ generation."
24

25
let no_track = Debug.register_flag "wp_no_track"
Andrei Paskevich's avatar
Andrei Paskevich committed
26 27
  ~desc:"Do@ not@ remove@ redundant@ type@ invariant@ conditions@ from@ VCs."

28
let no_eval = Debug.register_flag "wp_no_eval"
Andrei Paskevich's avatar
Andrei Paskevich committed
29
  ~desc:"Do@ not@ simplify@ pattern@ matching@ on@ record@ datatypes@ in@ VCs."
30

Jean-Christophe Filliâtre's avatar
Jean-Christophe Filliâtre committed
31 32
let lemma_label = Ident.create_label "why3:lemma"

33
(** Marks *)
Andrei Paskevich's avatar
Andrei Paskevich committed
34 35 36 37

let ts_mark = create_tysymbol (id_fresh "'mark") [] None
let ty_mark = ty_app ts_mark []

38
let ity_mark = ity_pur ts_mark []
39 40

let fresh_mark () = create_vsymbol (id_fresh "'mark") ty_mark
41

Andrei Paskevich's avatar
Andrei Paskevich committed
42 43 44 45 46 47 48 49
let fs_at =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "at") [ty; ty_mark] (Some ty)

let fs_old =
  let ty = ty_var (create_tvsymbol (id_fresh "a")) in
  create_lsymbol (id_fresh "old") [ty] (Some ty)

50
let mark_theory =
51
  let uc = create_theory ~path:["why3";"Mark"] (id_fresh "Mark") in
52 53 54
  let uc = add_ty_decl uc ts_mark in
  close_theory uc

55 56
let th_mark_at =
  let uc = create_theory (id_fresh "WP builtins: at") in
57
  let uc = use_export uc mark_theory in
Andrei Paskevich's avatar
Andrei Paskevich committed
58
  let uc = add_param_decl uc fs_at in
59 60 61 62 63
  close_theory uc

let th_mark_old =
  let uc = create_theory (id_fresh "WP builtins: old") in
  let uc = use_export uc th_mark_at in
Andrei Paskevich's avatar
Andrei Paskevich committed
64 65 66
  let uc = add_param_decl uc fs_old in
  close_theory uc

67
let fs_now = create_lsymbol (id_fresh "%now") [] (Some ty_mark)
Andrei Paskevich's avatar
Andrei Paskevich committed
68
let t_now = fs_app fs_now [] ty_mark
Andrei Paskevich's avatar
Andrei Paskevich committed
69
let e_now = e_ghost (e_lapp fs_now [] (ity_pur ts_mark []))
Andrei Paskevich's avatar
Andrei Paskevich committed
70

71 72
(* [vs_old] appears in the postconditions given to the core API,
   which expects every vsymbol to be a pure part of a pvsymbol *)
Andrei Paskevich's avatar
Andrei Paskevich committed
73
let pv_old = create_pvsymbol ~ghost:true (id_fresh "%old") ity_mark
74 75
let vs_old = pv_old.pv_vs
let t_old  = t_var vs_old
76

Andrei Paskevich's avatar
Andrei Paskevich committed
77 78
let t_at_old t = t_app fs_at [t; t_old] t.t_ty

79
let ls_absurd = create_lsymbol (id_fresh "absurd") [] None
80
let t_absurd  = t_label_add Split_goal.stop_split (ps_app ls_absurd [])
81

82
let mk_t_if f = t_if f t_bool_true t_bool_false
83
let to_term t = if t.t_ty = None then mk_t_if t else t
84

85
(* any vs in post/xpost is either a pvsymbol or a fresh mark *)
86
let ity_of_vs vs =
87
  if Ty.ty_equal vs.vs_ty ty_mark then ity_mark else (restore_pv vs).pv_ity
88 89 90

(* replace every occurrence of [old(t)] with [at(t,'old)] *)
let rec remove_old f = match f.t_node with
Andrei Paskevich's avatar
Andrei Paskevich committed
91
  | Tapp (ls,[t]) when ls_equal ls fs_old -> t_at_old (remove_old t)
92 93 94 95 96 97 98 99
  | _ -> t_map remove_old f

(* replace every occurrence of [at(t,'now)] with [t] *)
let rec remove_at f = match f.t_node with
  | Tapp (ls, [t; { t_node = Tapp (fs,[]) }])
    when ls_equal ls fs_at && ls_equal fs fs_now -> remove_at t
  | _ -> t_map remove_at f

100 101 102 103
(* replace [at(t,'old)] with [at(t,lab)] everywhere in formula [f] *)
let old_mark lab t = t_subst_single vs_old (t_var lab) t

(* replace [at(t,lab)] with [at(t,'now)] everywhere in formula [f] *)
Andrei Paskevich's avatar
Andrei Paskevich committed
104 105
let erase_mark lab t = t_subst_single lab t_now t

Andrei Paskevich's avatar
Andrei Paskevich committed
106 107
(* retreat to the point of the current postcondition's ['old] *)
let backstep fn q xq =
Andrei Paskevich's avatar
Andrei Paskevich committed
108 109 110
  let lab = fresh_mark () in
  let f = fn (old_mark lab q) (Mexn.map (old_mark lab) xq) in
  erase_mark lab f
111

112
(** WP utilities *)
113 114 115 116 117 118 119

let default_exn_post xs _ =
  let vs = create_vsymbol (id_fresh "result") (ty_of_ity xs.xs_ity) in
  create_post vs t_true

let default_post vty ef =
  let vs = create_vsymbol (id_fresh "result") (ty_of_vty vty) in
120
  create_post vs t_true, Mexn.mapi default_exn_post ef.eff_raises
121

122 123 124 125 126
let wp_label e f =
  let loc = if f.t_loc = None then e.e_loc else f.t_loc in
  let lab = Ident.Slab.union e.e_label f.t_label in
  t_label ?loc lab f

Andrei Paskevich's avatar
Andrei Paskevich committed
127
let expl_pre       = Ident.create_label "expl:precondition"
128
let expl_post      = Ident.create_label "expl:postcondition"
Andrei Paskevich's avatar
Andrei Paskevich committed
129
let expl_xpost     = Ident.create_label "expl:exceptional postcondition"
130
let expl_assume    = Ident.create_label "expl:assumption"
Andrei Paskevich's avatar
Andrei Paskevich committed
131 132
let expl_assert    = Ident.create_label "expl:assertion"
let expl_check     = Ident.create_label "expl:check"
MARCHE Claude's avatar
MARCHE Claude committed
133
let expl_absurd    = Ident.create_label "expl:unreachable point"
134
let expl_type_inv  = Ident.create_label "expl:type invariant"
Andrei Paskevich's avatar
Andrei Paskevich committed
135 136
let expl_loop_init = Ident.create_label "expl:loop invariant init"
let expl_loop_keep = Ident.create_label "expl:loop invariant preservation"
137 138
let expl_loopvar   = Ident.create_label "expl:loop variant decrease"
let expl_variant   = Ident.create_label "expl:variant decrease"
139

140 141 142 143 144
let rec wp_expl l f = match f.t_node with
  | _ when Slab.mem Split_goal.stop_split f.t_label -> t_label_add l f
  | Tbinop (Tand,f1,f2) -> t_label_copy f (t_and (wp_expl l f1) (wp_expl l f2))
  | Teps _ -> t_label_add l f (* post-condition, push down later *)
  | _ -> f
145

146
let wp_and ~sym f1 f2 =
147 148
  if sym then t_and_simp f1 f2 else t_and_asym_simp f1 f2

149
let wp_ands ~sym fl =
150 151
  if sym then t_and_simp_l fl else t_and_asym_simp_l fl

152
let wp_implies f1 f2 = t_implies_simp f1 f2
153

154 155
let wp_let v t f = t_let_close_simp v t f

156 157
let wp_forall vl f = t_forall_close_simp vl [] f

158 159
let is_equality_for v f = match f.t_node with
  | Tapp (ps, [{ t_node = Tvar u }; t])
160
    when ls_equal ps ps_equ && vs_equal u v && t_v_occurs v t = 0 ->
161 162 163 164
      Some t
  | _ ->
      None

165 166 167 168 169
let wp_forall_post v p f =
  (* we optimize for the case when a postcondition
     is of the form (... /\ result = t /\ ...) *)
  let rec down p = match p.t_node with
    | Tbinop (Tand,l,r) ->
170 171 172 173 174 175
        let t, l, r =
          let t, l = down l in
          if t <> None then t, l, r else
            let t, r = down r in t, l, r
        in
        t, if t = None then p else t_label_copy p (t_and_simp l r)
176
    | _ ->
177 178
        let t = is_equality_for v p in
        t, if t = None then p else t_true
179 180 181 182 183 184
  in
  if ty_equal v.vs_ty ty_unit then
    t_subst_single v t_void (wp_implies p f)
  else match down p with
    | Some t, p -> wp_let v t (wp_implies p f)
    | _ -> wp_forall [v] (wp_implies p f)
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199
let t_and_subst v t1 t2 =
  (* if [t1] defines variable [v], return [t2] with [v] replaced by its
     definition. Otherwise return [t1 /\ t2] *)
  match is_equality_for v t1 with
  | Some def -> t_subst_single v def t2
  | None -> t_and_simp t1 t2

let t_implies_subst v t1 t2 =
  (* if [t1] defines variable [v], return [t2] with [v] replaced by its
     definition. Otherwise return [t1 -> t2] *)
  match is_equality_for v t1 with
  | Some def -> t_subst_single v def t2
  | None -> t_implies_simp t1 t2

200
let regs_of_writes eff = Sreg.union eff.eff_writes eff.eff_ghostw
Andrei Paskevich's avatar
Andrei Paskevich committed
201
let exns_of_raises eff = Sexn.union eff.eff_raises eff.eff_ghostx
202

203 204
let open_post q =
  let v, f = open_post q in
205
  v, Slab.fold wp_expl q.t_label f
206

207 208 209 210 211 212 213 214 215 216 217
let open_unit_post q =
  let v, q = open_post q in
  t_subst_single v t_void q

let create_unit_post =
  let v = create_vsymbol (id_fresh "void") ty_unit in
  fun q -> create_post v q

let vs_result e =
  create_vsymbol (id_fresh ?loc:e.e_loc "result") (ty_of_vty e.e_vty)

218 219 220 221 222 223
(** WP state *)

type wp_env = {
  prog_known : Mlw_decl.known_map;
  pure_known : Decl.known_map;
  global_env : Env.env;
Andrei Paskevich's avatar
Andrei Paskevich committed
224 225 226 227 228
  ps_int_le  : Term.lsymbol;
  ps_int_ge  : Term.lsymbol;
  ps_int_lt  : Term.lsymbol;
  ps_int_gt  : Term.lsymbol;
  fs_int_pl  : Term.lsymbol;
229
  fs_int_mn  : Term.lsymbol;
230
  letrec_var : term list Mint.t;
231
}
232

233 234 235 236 237 238 239 240 241
let decrease_alg ?loc env old_t t =
  let oty = t_type old_t in
  let nty = t_type t in
  let quit () =
    Loc.errorm ?loc "no default order for %a" Pretty.print_term t in
  let ts = match oty with { ty_node = Tyapp (ts,_) } -> ts | _ -> quit () in
  let csl = Decl.find_constructors env.pure_known ts in
  if csl = [] then quit ();
  let sbs = ty_match Mtv.empty (ty_app ts (List.map ty_var ts.ts_args)) oty in
242
  let add_arg fty acc =
243 244 245
    let fty = ty_inst sbs fty in
    if ty_equal fty nty then
      let vs = create_vsymbol (id_fresh "f") nty in
246 247
      pat_var vs, t_or_simp (t_equ (t_var vs) t) acc
    else pat_wild fty, acc in
248
  let add_cs (cs,_) =
249
    let pl, f = Lists.map_fold_right add_arg cs.ls_args t_false in
250 251 252 253 254
    t_close_branch (pat_app cs pl oty) f in
  t_case old_t (List.map add_cs csl)

let decrease_rel ?loc env old_t t = function
  | Some ls -> ps_app ls [t; old_t]
255 256
  | None when ty_equal (t_type old_t) ty_int
           && ty_equal (t_type t) ty_int ->
257
      t_and
258
        (ps_app env.ps_int_le [t_nat_const 0; old_t])
259 260 261
        (ps_app env.ps_int_lt [t; old_t])
  | None -> decrease_alg ?loc env old_t t

262
let decrease loc lab env olds varl =
263
  let rec decr pr olds varl = match olds, varl with
264 265 266 267 268 269 270 271 272 273
    | [], [] -> (* empty variant *)
        t_true
    | [old_t], [t, rel] ->
        t_and_simp pr (decrease_rel ?loc env old_t t rel)
    | old_t::_, (t,_)::_ when not (oty_equal old_t.t_ty t.t_ty) ->
        Loc.errorm ?loc "cannot use lexicographic ordering"
    | old_t::olds, (t,rel)::varl ->
        let dt = t_and_simp pr (decrease_rel ?loc env old_t t rel) in
        let pr = t_and_simp pr (t_equ old_t t) in
        t_or_simp dt (decr pr olds varl)
274
    | _ -> assert false
Andrei Paskevich's avatar
Andrei Paskevich committed
275
  in
276 277 278 279
  t_label ?loc lab (decr t_true olds varl)

let expl_variant = Slab.add Split_goal.stop_split (Slab.singleton expl_variant)
let expl_loopvar = Slab.add Split_goal.stop_split (Slab.singleton expl_loopvar)
Andrei Paskevich's avatar
Andrei Paskevich committed
280

281 282
(** Reconstruct pure values after writes *)

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
let model1_lab = Slab.singleton (create_label "model:1")
let model2_lab = Slab.singleton (create_label "model:quantify(2)")
let model3_lab = Slab.singleton (create_label "model:cond")

let mk_var id label ty = create_vsymbol (id_clone ~label id) ty

(* replace "contemporary" variables with fresh ones *)
let rec subst_at_now now mvs t = match t.t_node with
  | Tvar vs when now ->
      begin try t_var (Mvs.find vs mvs) with Not_found -> t end
  | Tapp (ls, _) when ls_equal ls fs_old -> assert false
  | Tapp (ls, [_; mark]) when ls_equal ls fs_at ->
      let now = match mark.t_node with
        | Tvar vs when vs_equal vs vs_old -> assert false
        | Tapp (ls,[]) when ls_equal ls fs_now -> true
        | _ -> false in
      t_map (subst_at_now now mvs) t
  | Tlet _ | Tcase _ | Teps _ | Tquant _ ->
      (* do not open unless necessary *)
302
      let mvs = Mvs.set_inter mvs (t_vars t) in
303 304 305 306 307 308
      if Mvs.is_empty mvs then t else
      t_map (subst_at_now now mvs) t
  | _ ->
      t_map (subst_at_now now mvs) t

(* generic expansion of an algebraic type value *)
309
let analyze_var fn_down fn_join lkm km vs ity =
310 311
  let var_of_fd fd =
    create_vsymbol (id_fresh "y") (ty_of_ity fd.fd_ity) in
312
  let branch (cs,fdl) =
313 314 315
    let vl = List.map var_of_fd fdl in
    let pat = pat_app cs (List.map pat_var vl) vs.vs_ty in
    let t = fn_join cs (List.map2 fn_down vl fdl) vs.vs_ty in
316
    t_close_branch pat t in
317
  let csl = Mlw_decl.inst_constructors lkm km ity in
318
  t_case_simp (t_var vs) (List.map branch csl)
319

320 321
(* given a map of modified regions, construct the updated value of [vs] *)
let update_var env (mreg : vsymbol Mreg.t) vs =
322
  let rec update vs { fd_ity = ity; fd_mut = mut } =
323 324
    (* are we a mutable variable? *)
    let get_vs r = Mreg.find_def vs r mreg in
325
    let vs = Opt.fold (fun _ -> get_vs) vs mut in
326 327
    (* should we update our value further? *)
    let check_reg r _ = reg_occurs r ity.ity_vars in
328
    if ity_immutable ity || not (Mreg.exists check_reg mreg) then t_var vs
329 330
    else analyze_var update fs_app env.pure_known env.prog_known vs ity in
  update vs { fd_ity = ity_of_vs vs; fd_ghost = false; fd_mut = None }
331

332 333 334 335
(* given a map of modified regions, update every affected variable in [f] *)
let update_term env (mreg : vsymbol Mreg.t) f =
  (* [vars] : modified variable -> updated value *)
  let update vs _ = match update_var env mreg vs with
336 337
    | { t_node = Tvar nv } when vs_equal vs nv -> None
    | t -> Some t in
338
  let vars = Mvs.mapi_filter update (t_vars f) in
339
  (* [vv'] : modified variable -> fresh variable *)
340 341
  let new_var vs _ = mk_var vs.vs_name model2_lab vs.vs_ty in
  let vv' = Mvs.mapi new_var vars in
342
  (* update modified variables *)
343
  let update v t f = wp_let (Mvs.find v vv') t f in
344 345
  Mvs.fold update vars (subst_at_now true vv' f)

346 347 348 349 350
let get_single_region_of_var vs =
  match (ity_of_vs vs).ity_node with
    | Ityapp (_,_,[r]) -> Some r
    | _ -> None

351 352
(* look for a variable with a single region equal to [reg] *)
let var_of_region reg f =
353
  let test acc vs =
354 355
    match get_single_region_of_var vs with
    | Some r when reg_equal r reg -> Some vs
356
    | _ -> acc in
357
  t_v_fold test None f
358 359 360 361 362 363 364 365 366 367 368 369

let quantify env regs f =
  (* mreg : modified region -> vs *)
  let get_var reg () =
    let ty = ty_of_ity reg.reg_ity in
    let id = match var_of_region reg f with
      | Some vs -> vs.vs_name
      | None -> reg.reg_name in
    mk_var id model1_lab ty in
  let mreg = Mreg.mapi get_var regs in
  (* quantify over the modified resions *)
  let f = update_term env mreg f in
370
  wp_forall (List.rev (Mreg.values mreg)) f
371

372 373 374 375 376 377 378 379
(** Invariants *)

let get_invariant km t =
  let ty = t_type t in
  let ts = match ty.ty_node with
    | Tyapp (ts,_) -> ts
    | _ -> assert false in
  let rec find_td = function
380
    | (its,_,inv) :: _ when ts_equal ts its.its_ts -> inv
381 382 383 384 385 386 387 388
    | _ :: tdl -> find_td tdl
    | [] -> assert false in
  let pd = Mid.find ts.ts_name km in
  let inv = match pd.Mlw_decl.pd_node with
    | Mlw_decl.PDdata tdl -> find_td tdl
    | _ -> assert false in
  let sbs = Ty.ty_match Mtv.empty (t_type inv) ty in
  let u, p = open_post (t_ty_subst sbs Mvs.empty inv) in
389
  wp_expl expl_type_inv (t_subst_single u t p)
390 391 392 393 394

let ps_inv = Term.create_psymbol (id_fresh "inv")
  [ty_var (create_tvsymbol (id_fresh "a"))]

let full_invariant lkm km vs ity =
395
  let rec update vs { fd_ity = ity } =
396
    if not (ity_has_inv ity) then t_true else
397 398 399 400 401 402 403 404 405
    (* what is our current invariant? *)
    let f = match ity.ity_node with
      | Ityapp (its,_,_) when its.its_inv ->
          if Debug.test_flag no_track
          then get_invariant km (t_var vs)
          else ps_app ps_inv [t_var vs]
      | _ -> t_true in
    (* what are our sub-invariants? *)
    let join _ fl _ = wp_ands ~sym:true fl in
406
    let g = analyze_var update join lkm km vs ity in
407 408 409
    (* put everything together *)
    wp_and ~sym:true f g
  in
410
  update vs { fd_ity = ity; fd_ghost = false; fd_mut = None }
411 412

(** Value tracking *)
413 414 415

type point = int
type value = point list Mls.t (* constructor -> field list *)
416

417
type state = {
418 419
  st_km   : Mlw_decl.known_map;
  st_lkm  : Decl.known_map;
420
  st_mem  : value Hint.t;
421
  st_next : point ref;
422 423
}

424
(* dead code
425 426 427
type names = point Mvs.t  (* variable -> point *)
type condition = lsymbol Mint.t (* point -> constructor *)
type lesson = condition list Mint.t (* point -> conditions for invariant *)
428
*)
429 430 431 432

let empty_state lkm km = {
  st_km   = km;
  st_lkm  = lkm;
433
  st_mem  = Hint.create 5;
434
  st_next = ref 0;
435 436 437
}

let next_point state =
438
  let res = !(state.st_next) in incr state.st_next; res
439

440
let make_value state ty =
441 442 443
  let get_p _ = next_point state in
  let new_cs cs = List.map get_p cs.ls_args in
  let add_cs m (cs,_) = Mls.add cs (new_cs cs) m in
444
  let csl = match ty.ty_node with
445 446
    | Tyapp (ts,_) -> Decl.find_constructors state.st_lkm ts
    | _ -> [] in
447 448
  List.fold_left add_cs Mls.empty csl

449
let match_point state ty p =
450
  try Hint.find state.st_mem p with Not_found ->
451
  let value = make_value state ty in
452
  if not (Mls.is_empty value) then
453
    Hint.replace state.st_mem p value;
454 455
  value

456 457 458 459 460 461 462 463 464 465 466 467 468 469
let rec open_pattern state names value p pat = match pat.pat_node with
  | Pwild -> names
  | Pvar vs -> Mvs.add vs p names
  | Papp (cs,patl) ->
      let add_pat names p pat =
        let value = match_point state pat.pat_ty p in
        open_pattern state names value p pat in
      List.fold_left2 add_pat names (Mls.find cs value) patl
  | Por _ ->
      let add_vs vs s = Mvs.add vs (next_point state) s in
      Svs.fold add_vs pat.pat_vars names
  | Pas (pat,vs) ->
      open_pattern state (Mvs.add vs p names) value p pat

470 471 472 473
let rec point_of_term state names t = match t.t_node with
  | Tvar vs ->
      Mvs.find vs names
  | Tapp (ls, tl) ->
474
      begin match Mid.find ls.ls_name state.st_lkm with
475 476 477 478 479 480 481 482 483
        | { Decl.d_node = Decl.Ddata tdl } ->
            let is_cs (cs,_) = ls_equal ls cs in
            let is_cs (_,csl) = List.exists is_cs csl in
            if List.exists is_cs tdl
            then point_of_constructor state names ls tl
            else point_of_projection state names ls (List.hd tl)
        | _ -> next_point state
      end
  | Tlet (t1, bt) ->
484
      let p1 = point_of_term state names t1 in
485
      let v, t2 = t_open_bound bt in
486 487 488 489 490 491 492
      let names = Mvs.add v p1 names in
      point_of_term state names t2
  | Tcase (t1,[br]) ->
      let pat, t2 = t_open_branch br in
      let p1 = point_of_term state names t1 in
      let value = match_point state pat.pat_ty p1 in
      let names = open_pattern state names value p1 pat in
493
      point_of_term state names t2
494 495 496 497
  | Tcase (t1,bl) ->
      (* we treat here the case of a value update: the value
         of each branch must be a distinct constructor *)
      let p = next_point state in
498
      let ty = Opt.get t.t_ty in
499
      let p1 = point_of_term state names t1 in
500
      let value = match_point state (Opt.get t1.t_ty) p1 in
501 502 503 504 505 506 507 508 509 510 511 512
      let branch acc br =
        let pat, t2 = t_open_branch br in
        let ls = match t2.t_node with
          | Tapp (ls,_) -> ls | _ -> raise Exit in
        let names = open_pattern state names value p1 pat in
        let p2 = point_of_term state names t2 in
        let v2 = match_point state ty p2 in
        Mls.add_new Exit ls (Mls.find_exn Exit ls v2) acc
      in
      begin try
        let value = List.fold_left branch Mls.empty bl in
        let value = Mls.set_union value (make_value state ty) in
513
        Hint.replace state.st_mem p value
514 515 516
      with Exit -> () end;
      p
  | Tconst _ | Tif _ | Teps _ -> next_point state
517 518 519 520
  | Tquant _ | Tbinop _ | Tnot _ | Ttrue | Tfalse -> assert false

and point_of_constructor state names ls tl =
  let p = next_point state in
521
  let pl = List.map (point_of_term state names) tl in
522
  let value = make_value state (Opt.get ls.ls_value) in
523
  let value = Mls.add ls pl value in
524
  Hint.replace state.st_mem p value;
525 526 527
  p

and point_of_projection state names ls t1 =
528
  let ty = Opt.get t1.t_ty in
529
  let csl = match ty.ty_node with
530
    | Tyapp (ts,_) -> Decl.find_constructors state.st_lkm ts
531 532 533
    | _ -> assert false in
  match csl with
    | [cs,pjl] ->
534
        let p1 = point_of_term state names t1 in
535
        let value = match_point state ty p1 in
536 537 538 539 540 541 542
        let rec find_p pjl pl = match pjl, pl with
          | Some pj::_, p::_ when ls_equal ls pj -> p
          | _::pjl, _::pl -> find_p pjl pl
          | _ -> assert false in
        find_p pjl (Mls.find cs value)
    | _ -> next_point state (* more than one, can't choose *)

543 544 545 546 547 548
let rec track_values state names lesson cond f = match f.t_node with
  | Tapp (ls, [t1]) when ls_equal ls ps_inv ->
      let p1 = point_of_term state names t1 in
      let condl = Mint.find_def [] p1 lesson in
      let contains c1 c2 = Mint.submap (fun _ -> ls_equal) c2 c1 in
      if List.exists (contains cond) condl then
549
        lesson, t_label_copy f t_true
550 551 552 553
      else
        let good c = not (contains c cond) in
        let condl = List.filter good condl in
        let l = Mint.add p1 (cond::condl) lesson in
554
        l, t_label_copy f (get_invariant state.st_km t1)
555 556 557 558 559 560 561 562 563 564 565 566 567 568
  | Tbinop (Timplies, f1, f2) ->
      let l, f1 = track_values state names lesson cond f1 in
      let _, f2 = track_values state names l cond f2 in
      lesson, t_label_copy f (t_implies_simp f1 f2)
  | Tbinop (Tand, f1, f2) ->
      let l, f1 = track_values state names lesson cond f1 in
      let l, f2 = track_values state names l cond f2 in
      l, t_label_copy f (t_and_simp f1 f2)
  | Tif (fc, f1, f2) ->
      let _, f1 = track_values state names lesson cond f1 in
      let _, f2 = track_values state names lesson cond f2 in
      lesson, t_label_copy f (t_if_simp fc f1 f2)
  | Tcase (t1, bl) ->
      let p1 = point_of_term state names t1 in
569
      let value = match_point state (Opt.get t1.t_ty) p1 in
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
      let is_pat_var = function
        | { pat_node = Pvar _ } -> true | _ -> false in
      let branch l br =
        let pat, f1, cb = t_open_branch_cb br in
        let learn, cond = match bl, pat.pat_node with
          | [_], _ -> true, cond (* one branch, can learn *)
          | _, Papp (cs, pl) when List.for_all is_pat_var pl ->
              (try true, Mint.add_new Exit p1 cs cond (* can learn *)
              with Exit -> false, cond) (* contradiction, cannot learn *)
          | _, _ -> false, cond (* complex pattern, will not learn *)
        in
        let names = open_pattern state names value p1 pat in
        let m, f1 = track_values state names lesson cond f1 in
        let l = if learn then m else l in
        l, cb pat f1
      in
586
      let l, bl = Lists.map_fold_left branch lesson bl in
587
      l, t_label_copy f (t_case_simp t1 bl)
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
  | Tlet (t1, bf) ->
      let p1 = point_of_term state names t1 in
      let v, f1, cb = t_open_bound_cb bf in
      let names = Mvs.add v p1 names in
      let l, f1 = track_values state names lesson cond f1 in
      l, t_label_copy f (t_let_simp t1 (cb v f1))
  | Tquant (Tforall, qf) ->
      let vl, trl, f1, cb = t_open_quant_cb qf in
      let add_vs s vs = Mvs.add vs (next_point state) s in
      let names = List.fold_left add_vs names vl in
      let l, f1 = track_values state names lesson cond f1 in
      l, t_label_copy f (t_forall_simp (cb vl trl f1))
  | Tbinop ((Tor|Tiff),_,_) | Tquant (Texists,_)
  | Tapp _ | Tnot _ | Ttrue | Tfalse -> lesson, f
  | Tvar _ | Tconst _ | Teps _ -> assert false

let track_values lkm km f =
  let state = empty_state lkm km in
  let _, f = track_values state Mvs.empty Mint.empty Mint.empty f in
  f
608

609 610
(** Weakest preconditions *)

611
let rec wp_expr env e q xq =
Andrei Paskevich's avatar
Andrei Paskevich committed
612
  let f = wp_desc env e q xq in
613
  if Debug.test_flag debug then begin
614
    Format.eprintf "@[--------@\n@[<hov 2>e = %a@]@\n" Mlw_pretty.print_expr e;
615 616 617
    Format.eprintf "@[<hov 2>q = %a@]@\n" Pretty.print_term q;
    Format.eprintf "@[<hov 2>f = %a@]@\n----@]@." Pretty.print_term f;
  end;
618
  f
619

620
and wp_desc env e q xq = match e.e_node with
621 622 623
  | Elogic t ->
      let v, q = open_post q in
      let t = wp_label e t in
624 625 626
      (* NOTE: if you replace this t_subst by t_let or anything else,
         you must handle separately the case "let mark = 'now in ...",
         which requires 'now to be substituted for mark in q *)
627 628 629 630
      if ty_equal v.vs_ty ty_mark then
        t_subst_single v (to_term t) q
      else
        t_let_close_simp v (to_term t) q
Andrei Paskevich's avatar
Andrei Paskevich committed
631 632 633
  | Evalue pv ->
      let v, q = open_post q in
      let t = wp_label e (t_var pv.pv_vs) in
634
      t_subst_single v t q
635 636 637
  | Earrow _ ->
      let q = open_unit_post q in
      (* wp_label e *) q (* FIXME? *)
638
  | Elet ({ let_sym = LetV v; let_expr = e1 }, e2)
639
    when Opt.equal Loc.equal v.pv_vs.vs_name.id_loc e1.e_loc ->
640 641 642 643 644
    (* we push the label down, past the implicitly inserted "let" *)
      let w = wp_expr env (e_label_copy e e2) q xq in
      let q = create_post v.pv_vs w in
      wp_expr env e1 q xq
  | Elet ({ let_sym = LetV v; let_expr = e1 }, e2) ->
645
      let w = wp_expr env e2 q xq in
646
      let q = create_post v.pv_vs w in
647
      wp_label e (wp_expr env e1 q xq)
648 649 650 651
  | Elet ({ let_sym = LetA _; let_expr = e1 }, e2) ->
      let w = wp_expr env e2 q xq in
      let q = create_unit_post w in
      wp_label e (wp_expr env e1 q xq)
652 653
  | Erec (fdl, e1) ->
      let fr = wp_rec_defn env fdl in
654 655 656
      let fe = wp_expr env e1 q xq in
      let fr = wp_ands ~sym:true fr in
      wp_label e (wp_and ~sym:true fr fe)
657 658 659 660 661 662 663 664 665 666 667
  | Eif (e1, e2, e3) ->
      let res = vs_result e1 in
      let test = t_equ (t_var res) t_bool_true in
      let test = t_label ?loc:e1.e_loc model3_lab test in
      (* if both branches are pure, do not split *)
      let w =
        let get_term e = match e.e_node with
          | Elogic t -> to_term t
          | Evalue v -> t_var v.pv_vs
          | _ -> raise Exit in
        try
668 669
          let r2 = wp_label e2 (get_term e2) in
          let r3 = wp_label e3 (get_term e3) in
670 671 672 673 674 675 676 677 678
          let v, q = open_post q in
          t_subst_single v (t_if_simp test r2 r3) q
        with Exit ->
          let w2 = wp_expr env e2 q xq in
          let w3 = wp_expr env e3 q xq in
          t_if_simp test w2 w3
      in
      let q = create_post res w in
      wp_label e (wp_expr env e1 q xq)
679 680 681 682 683 684 685 686 687 688 689
  (* optimization for the particular case let _ = e1 in e2 *)
  | Ecase (e1, [{ ppat_pattern = { pat_node = Term.Pwild }}, e2]) ->
      let w = wp_expr env e2 q xq in
      let q = create_post (vs_result e1) w in
      wp_label e (wp_expr env e1 q xq)
  (* optimization for the particular case let () = e1 in e2 *)
  | Ecase (e1, [{ ppat_pattern = { pat_node = Term.Papp (cs,[]) }}, e2])
    when ls_equal cs fs_void ->
      let w = wp_expr env e2 q xq in
      let q = create_unit_post w in
      wp_label e (wp_expr env e1 q xq)
690 691 692 693
  | Ecase (e1, bl) ->
      let res = vs_result e1 in
      let branch ({ ppat_pattern = pat }, e) =
        t_close_branch pat (wp_expr env e q xq) in
694
      let w = t_case_simp (t_var res) (List.map branch bl) in
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
      let q = create_post res w in
      wp_label e (wp_expr env e1 q xq)
  | Eghost e1 ->
      wp_label e (wp_expr env e1 q xq)
  | Eraise (xs, e1) ->
      let q = try Mexn.find xs xq with
        Not_found -> assert false in
      wp_label e (wp_expr env e1 q xq)
  | Etry (e1, bl) ->
      let branch (xs,v,e) acc =
        let w = wp_expr env e q xq in
        let q = create_post v.pv_vs w in
        Mexn.add xs q acc in
      let xq = List.fold_right branch bl xq in
      wp_label e (wp_expr env e1 q xq)
710 711
  | Eassert (Aassert, f) ->
      let q = open_unit_post q in
712
      let f = wp_expl expl_assert f in
713 714 715
      wp_and ~sym:false (wp_label e f) q
  | Eassert (Acheck, f) ->
      let q = open_unit_post q in
716
      let f = wp_expl expl_check f in
717 718 719
      wp_and ~sym:true (wp_label e f) q
  | Eassert (Aassume, f) ->
      let q = open_unit_post q in
720
      let f = wp_expl expl_assume f in
721
      wp_implies (wp_label e f) q
Andrei Paskevich's avatar
Andrei Paskevich committed
722
  | Eabsurd ->
723
      wp_label e (wp_expl expl_absurd t_absurd)
724 725
  | Eany spec ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
Andrei Paskevich's avatar
Andrei Paskevich committed
726 727
      let p = t_label ?loc:e.e_loc p.t_label p in
      (* TODO: propagate call labels into tyc.c_post *)
728
      let w = wp_abstract env spec.c_effect spec.c_post spec.c_xpost q xq in
729
      wp_and ~sym:false p w
730 731
  | Eapp (e1,_,spec) ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
732
      let p = t_label ?loc:e.e_loc p.t_label p in
733
      let d =
734 735
        if spec.c_letrec = 0 || spec.c_variant = [] then t_true else
        let olds = Mint.find_def [] spec.c_letrec env.letrec_var in
736
        if olds = [] then t_true (* we are out of letrec *) else
737
        decrease e.e_loc expl_variant env olds spec.c_variant in
738
      (* TODO: propagate call labels into tyc.c_post *)
739
      let w = wp_abstract env spec.c_effect spec.c_post spec.c_xpost q xq in
740
      let w = wp_and ~sym:true d (wp_and ~sym:false p w) in
741 742
      let q = create_unit_post w in
      wp_expr env e1 q xq (* FIXME? should (wp_label e) rather be here? *)
743 744
  | Eabstr (e1, spec) ->
      let p = wp_label e (wp_expl expl_pre spec.c_pre) in
745 746 747 748 749 750 751
      (* every exception uncovered in spec is passed to xq *)
      let c_xq = Mexn.set_union spec.c_xpost xq in
      let w1 = backstep (wp_expr env e1) spec.c_post c_xq in
      (* so that now we don't need to prove these exceptions again *)
      let lost = Mexn.set_diff (exns_of_raises e1.e_effect) spec.c_xpost in
      let c_eff = Sexn.fold_left eff_remove_raise e1.e_effect lost in
      let w2 = wp_abstract env c_eff spec.c_post spec.c_xpost q xq in
752
      wp_and ~sym:false p (wp_and ~sym:true (wp_label e w1) w2)
753 754 755 756 757 758 759 760
  | Eassign (pl, e1, reg, pv) ->
      (* if we create an intermediate variable npv to represent e1
         in the post-condition of the assign, the call to wp_abstract
         will have to update this variable separately (in addition to
         all existing variables in q that require update), creating
         duplication.  To avoid it, we try to detect whether the value
         of e1 can be represented by an existing pure term that can
         be reused in the post-condition. *)
761 762
      let rec get_term d = match d.e_node with
        | Eghost e | Elet (_,e) | Erec (_,e) -> get_term e
763 764 765
        | Evalue v -> vs_result e1, t_var v.pv_vs
        | Elogic t -> vs_result e1, t
        | _ ->
766
            let ity = ity_of_expr e1 in
767 768
            let id = id_fresh ?loc:e1.e_loc "o" in
            (* must be a pvsymbol or restore_pv will fail *)
769
            let npv = create_pvsymbol id ~ghost:e1.e_ghost ity in
770
            npv.pv_vs, t_var npv.pv_vs
771
      in
772 773 774
      let res, t = get_term e1 in
      let t = fs_app pl.pl_ls [t] pv.pv_vs.vs_ty in
      let c_q = create_unit_post (t_equ t (t_var pv.pv_vs)) in
775 776
      let eff = eff_write eff_empty reg in
      let w = wp_abstract env eff c_q Mexn.empty q xq in
777
      let q = create_post res w in
778
      wp_label e (wp_expr env e1 q xq)
Andrei Paskevich's avatar
Andrei Paskevich committed
779 780 781
  | Eloop (inv, varl, e1) ->
      (* TODO: what do we do about well-foundness? *)
      let i = wp_expl expl_loop_keep inv in
782
      let olds = List.map (fun (t,_) -> t_at_old t) varl in
783 784 785 786
      let i = if varl = [] then i else
        let d = decrease e.e_loc expl_loopvar env olds varl in
        wp_and ~sym:true i d in
      let q = create_unit_post i in
Andrei Paskevich's avatar
Andrei Paskevich committed
787
      let w = backstep (wp_expr env e1) q xq in
Andrei Paskevich's avatar
Andrei Paskevich committed
788 789 790 791
      let regs = regs_of_writes e1.e_effect in
      let w = quantify env regs (wp_implies inv w) in
      let i = wp_expl expl_loop_init inv in
      wp_label e (wp_and ~sym:true i w)
Andrei Paskevich's avatar
Andrei Paskevich committed
792 793 794 795 796 797 798 799
  | Efor ({pv_vs = x}, ({pv_vs = v1}, d, {pv_vs = v2}), inv, e1) ->
      (* wp(for x = v1 to v2 do inv { I(x) } e1, Q, R) =
             v1 > v2  -> Q
         and v1 <= v2 ->     I(v1)
                         and forall S. forall i. v1 <= i <= v2 ->
                                                 I(i) -> wp(e1, I(i+1), R)
                                       and I(v2+1) -> Q *)
      let gt, le, incr = match d with
800 801 802 803
        | Mlw_expr.To     -> env.ps_int_gt, env.ps_int_le, env.fs_int_pl
        | Mlw_expr.DownTo -> env.ps_int_lt, env.ps_int_ge, env.fs_int_mn
      in
      let one = t_nat_const 1 in
Andrei Paskevich's avatar
Andrei Paskevich committed
804 805 806 807
      let v1_gt_v2 = ps_app gt [t_var v1; t_var v2] in
      let v1_le_v2 = ps_app le [t_var v1; t_var v2] in
      let q = open_unit_post q in
      let wp_init =
808
        wp_expl expl_loop_init (t_subst_single x (t_var v1) inv) in
Andrei Paskevich's avatar
Andrei Paskevich committed
809
      let wp_step =
810
        let next = fs_app incr [t_var x; one] ty_int in
811 812
        let post = wp_expl expl_loop_keep (t_subst_single x next inv) in
        wp_expr env e1 (create_unit_post post) xq in
Andrei Paskevich's avatar
Andrei Paskevich committed
813
      let wp_last =
814
        let v2pl1 = fs_app incr [t_var v2; one] ty_int in
Andrei Paskevich's avatar
Andrei Paskevich committed
815 816 817 818 819
        wp_implies (t_subst_single x v2pl1 inv) q in
      let wp_good = wp_and ~sym:true
        wp_init
        (quantify env (regs_of_writes e1.e_effect)
           (wp_and ~sym:true
820
              (wp_forall [x] (wp_implies
Andrei Paskevich's avatar
Andrei Paskevich committed
821 822
                (wp_and ~sym:true (ps_app le [t_var v1; t_var x])
                                  (ps_app le [t_var x;  t_var v2]))
823
                (wp_implies inv wp_step)))
Andrei Paskevich's avatar
Andrei Paskevich committed
824 825 826 827 828 829 830
              wp_last))
      in
      let wp_full = wp_and ~sym:true
        (wp_implies v1_gt_v2 q)
        (wp_implies v1_le_v2 wp_good)
      in
      wp_label e wp_full
831

Andrei Paskevich's avatar
Andrei Paskevich committed
832 833 834 835 836 837 838
and wp_abstract env c_eff c_q c_xq q xq =
  let regs = regs_of_writes c_eff in
  let exns = exns_of_raises c_eff in
  let quantify_post c_q q =
    let v, f = open_post q in
    let c_v, c_f = open_post c_q in
    let c_f = t_subst_single c_v (t_var v) c_f in
839
    let f = wp_forall_post v c_f f in
Andrei Paskevich's avatar
Andrei Paskevich committed
840 841 842 843 844 845 846
    quantify env regs f
  in
  let quantify_xpost _ c_xq xq =
    Some (quantify_post c_xq xq) in
  let proceed c_q c_xq =
    let f = quantify_post c_q q in
    (* every xs in exns is guaranteed to be in c_xq and xq *)
847 848
    assert (Mexn.set_submap exns xq);
    assert (Mexn.set_submap exns c_xq);
Andrei Paskevich's avatar
Andrei Paskevich committed
849 850 851
    let xq = Mexn.set_inter xq exns in
    let c_xq = Mexn.set_inter c_xq exns in
    let mexn = Mexn.inter quantify_xpost c_xq xq in
852
    (* FIXME? This wp_ands is asymmetric in Pgm_wp *)
Andrei Paskevich's avatar
Andrei Paskevich committed
853 854
    wp_ands ~sym:true (f :: Mexn.values mexn)
  in
Andrei Paskevich's avatar
Andrei Paskevich committed
855
  backstep proceed c_q c_xq
Andrei Paskevich's avatar
Andrei Paskevich committed
856

857
and wp_fun_regs ps l = (* regions to refresh at the top of function WP *)
858 859 860 861 862
  let add_arg = let seen = ref Sreg.empty in fun sbs pv ->
    (* we only need to "havoc" the regions that occur twice in [l.l_args].
       If a region in an argument is shared with the context, then is it
       already frozen in [ps.ps_subst]. If a region in an argument is not
       shared at all, the last [wp_forall] over [args] will be enough. *)
863 864 865 866 867 868 869
    let rec down sbs ity =
      let rl = match ity.ity_node with
        | Ityapp (_,_,rl) -> rl | _ -> [] in
      ity_fold down (List.fold_left add_reg sbs rl) ity
    and add_reg sbs r =
      if Sreg.mem r !seen then reg_match sbs r r else
      (seen := Sreg.add r !seen; down sbs r.reg_ity) in
870
    down sbs pv.pv_ity in
871 872 873 874 875
  let sbs = List.fold_left add_arg ps.ps_subst l.l_args in
  Mreg.map (fun _ -> ()) sbs.ity_subst_reg

and wp_fun_defn env { fun_ps = ps ; fun_lambda = l } =
  let lab = fresh_mark () and c = l.l_spec in
876
  let args = List.map (fun pv -> pv.pv_vs) l.l_args in
877 878
  let env =
    if c.c_letrec = 0 || c.c_variant = [] then env else
879
    let lab = t_var lab in
Andrei Paskevich's avatar
Andrei Paskevich committed
880
    let t_at_lab (t,_) = t_app fs_at [t; lab] t.t_ty in
881
    let tl = List.map t_at_lab c.c_variant in
882 883
    let lrv = Mint.add c.c_letrec tl env.letrec_var in
    { env with letrec_var = lrv } in
884
  let q = old_mark lab (wp_expl expl_post c.c_post) in